[1] S. Bau and A. F. Beardon, The metric dimension of metric spaces, Comput. Methods Funct. Theory, 13
(2013), pp. 295–305.
[2] J. K. Beem, Pseudo-Riemannian manifolds with totally geodesic bisectors, Proc. Amer. Math. Soc., 49 (1975),
pp. 212–215.
[3] D. L. Boutin, Determining sets, resolving sets, and the exchange property, Graphs Combin., 25 (2009),
pp. 789–806.
[4] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, and M. L. Puertas ´ , On the metric dimension of
infinite graphs, in LAGOS’09—V Latin-American Algorithms, Graphs and Optimization Symposium, vol. 35
of Electron. Notes Discrete Math., Elsevier Sci. B. V., Amsterdam, 2009, pp. 15–20.
[5] G. G. Chappell, J. Gimbel, and C. Hartman, Bounds on the metric and partition dimensions of a graph,
Ars Combin., 88 (2008), pp. 349–366.
[6] M. P. a. do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkh¨auser Boston, Inc.,
Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty.
[7] M. Heydarpour and S. Maghsoudi, The metric dimension of metric manifolds, Bull. Aust. Math. Soc.,
91 (2015), pp. 508–513.
[8] P. Hoffman and B. Richter, Embedding graphs in surfaces, J. Combin. Theory Ser. B, 36 (1984), pp. 65–84.
[9] S. K. Lando and A. K. Zvonkin, Graphs on surfaces and their applications, vol. 141 of Encyclopaedia of
Mathematical Sciences, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier, Low-Dimensional
Topology, II.
[10] R. A. Melter and I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics, and Image
Processing, 25 (1984), pp. 113–121.
[11] J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.
[12] A. Robles-Kelly and E. R. Hancock, A Riemannian approach to graph embedding, Pattern Recognition,
40 (2007), pp. 1042–1056.