We compute the metric dimension of Riemannian manifolds of constant curvature. We define the edge weighted metric dimension of the geodesic graphs in Riemannian manifolds and we show that each complete geodesic graph $G = (V,E)$ embedded in a Riemannin manifold of constant curvature resolves a totally geodesic submanifold of dimension $|V| − 1$.
Heidarkhani Gilani, S., Mirzaie, R., & Vatandoost, E. (2023). A remark on the metric dimension in Riemannian manifolds of constant curvature. AUT Journal of Mathematics and Computing, (), -. doi: 10.22060/ajmc.2023.22527.1165
MLA
Shiva Heidarkhani Gilani; Reza Mirzaie; Ebrahim Vatandoost. "A remark on the metric dimension in Riemannian manifolds of constant curvature". AUT Journal of Mathematics and Computing, , , 2023, -. doi: 10.22060/ajmc.2023.22527.1165
HARVARD
Heidarkhani Gilani, S., Mirzaie, R., Vatandoost, E. (2023). 'A remark on the metric dimension in Riemannian manifolds of constant curvature', AUT Journal of Mathematics and Computing, (), pp. -. doi: 10.22060/ajmc.2023.22527.1165
VANCOUVER
Heidarkhani Gilani, S., Mirzaie, R., Vatandoost, E. A remark on the metric dimension in Riemannian manifolds of constant curvature. AUT Journal of Mathematics and Computing, 2023; (): -. doi: 10.22060/ajmc.2023.22527.1165