A remark on the metric dimension in Riemannian manifolds of constant curvature

Document Type : Original Article

Authors

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

Abstract

We compute the metric dimension of Riemannian manifolds of constant curvature. We define the edge weghited metric dimension of the geodesic graphs in Riemannian manifolds and we show that each complete geodesic graph G = (V, E) embedded in a Riemannian manifold of constant curvature resolves a totally geodesic submanifold of dimension |V | − 1. 

Keywords

Main Subjects


[1] S. Bau and A. F. Beardon, The metric dimension of metric spaces, Comput. Methods Funct. Theory, 13
(2013), pp. 295–305.
[2] J. K. Beem, Pseudo-Riemannian manifolds with totally geodesic bisectors, Proc. Amer. Math. Soc., 49 (1975),
pp. 212–215.
[3] D. L. Boutin, Determining sets, resolving sets, and the exchange property, Graphs Combin., 25 (2009),
pp. 789–806.
[4] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, and M. L. Puertas ´ , On the metric dimension of
infinite graphs, in LAGOS’09—V Latin-American Algorithms, Graphs and Optimization Symposium, vol. 35
of Electron. Notes Discrete Math., Elsevier Sci. B. V., Amsterdam, 2009, pp. 15–20.
[5] G. G. Chappell, J. Gimbel, and C. Hartman, Bounds on the metric and partition dimensions of a graph,
Ars Combin., 88 (2008), pp. 349–366.
[6] M. P. a. do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkh¨auser Boston, Inc.,
Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty.
[7] M. Heydarpour and S. Maghsoudi, The metric dimension of metric manifolds, Bull. Aust. Math. Soc.,
91 (2015), pp. 508–513.
[8] P. Hoffman and B. Richter, Embedding graphs in surfaces, J. Combin. Theory Ser. B, 36 (1984), pp. 65–84.
[9] S. K. Lando and A. K. Zvonkin, Graphs on surfaces and their applications, vol. 141 of Encyclopaedia of
Mathematical Sciences, Springer-Verlag, Berlin, 2004. With an appendix by Don B. Zagier, Low-Dimensional
Topology, II.
[10] R. A. Melter and I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics, and Image
Processing, 25 (1984), pp. 113–121.
[11] J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.
[12] A. Robles-Kelly and E. R. Hancock, A Riemannian approach to graph embedding, Pattern Recognition,
40 (2007), pp. 1042–1056.