$C^*$-algebra-valued $S_b$-metric spaces and applications to integral equations

Document Type : Original Article

Authors

Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

Abstract

We first introduce the concept of $C^{*}$-algebra-valued $S_{b}$-metric space, then we prove Banach contraction principle in this space. Finally, existence and uniqueness results for one type of integral equation is discussed.

Keywords

Main Subjects


[1] I. A. Bakhtin, The contraction mapping principle in almost metric space, in Functional analysis, No. 30 (Russian), Ulyanosk Gos. Ped. Inst. Press, Ulyanovsk, 1989, pp. 26–37.
[2] M. Boriceanu, M. Bota, and A. Petrus¸el, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), pp. 367–377.
[3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), pp. 5–11.
[4] M. Erden Ege and C. Alaca,C*-algebra-valued S-metric spaces, Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat., 67 (2018), pp. 165–177.
[5] N. Hussain and M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), pp. 1677–1684.
[6] W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Springer, Cham, 2014.
[7] Z. Ma and L. Jiang, C-algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl., (2015), pp. 2015:222, 12.
[8] Z. Ma, L. Jiang, and H. Sun, C* -algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., (2014), pp. 2014:206, 11.
[9] Z. H. Ma, L. N. Jiang, and Q. L. Xin, Fixed point theorems on operator-valued metric spaces, Trans. Beijing Inst. Tech., 34 (2014), pp. 1078–1080.
[10] N. M. Mlaiki, Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4 (2014), pp. 509– 524.
[11] G. J. Murphy, C*-algebras and operator theory, Academic Press, 1990.
[12] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), pp. 289–297.
[13] K. Prudhvi, Fixed point theorems in S-metric spaces, Univ. J. Comput. Math., 3 (2015), pp. 19–21.
[14] S. S. Razavi and H. P. Masiha, Common fixed point theorems in C*-algebra-valued B-metric spaces with applications to integral equations, Fixed Point Theory, 20 (2019), pp. 649–661.
[15] S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (2012), pp. 258–266.
[16] S. Sedghi, N. Shobe, and H. Zhou, A common fixed point theorem in D∗ -metric spaces, Fixed Point Theory Appl., (2007), pp. Art. ID 27906, 13.
[17] A. Singh and N. Hooda, Coupled fixed point theorems in S-metric spaces, International Journal of Mathematics and Statistics Invention, 2 (2014), pp. 33–39.
[18] N. Souayah and N. Mlaiki, A fixed point theorem in Sb-metric spaces, J. Math. Computer Sci., 2 (2016), pp. 131–139.
[19] Q. Xia, The geodesic problem in quasimetric spaces, J. Geom. Anal., 19 (2009), pp. 452–479.