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1. Introduction

In 1922, Stefan Banach established a significant fixed point theorem known as the “Banach Contraction Principle
(BCP)” which is one of the fundamental results in analysis and serves as an essential axiom of fixed point theory.
The BCP has attracted the attention of many mathematicians, leading to various applications and extensions of
this principle.

In 1993, a new origin for semimetric spaces was introduced by Czerwik [3]. Since then, numerous authors have
studied fixed point theory in such spaces [1, 2, 5, 14]. Additionally, Xia [19] referred to these spaces as b-metric
space. For more details on this space, see [6].

Recently, in [8], the authors introduced the notion of C∗-algebra-valued metric spaces. In fact, the study of the
set of real numbers has transitioned to the framework of all positive elements of a unital C∗-algebra. In [7], as a
generalization of b-metric spaces and operator-valued metric spaces [9], the authors introduced a new type of metric
spaces, namely, C∗-algebra-valued b-metric spaces, and provided some fixed point results for self-maps satisfying
contractive conditions in such spaces.
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Lately, Sedghi et al. [15] introduced the concept of an S-metric space as a generalization of the G-metric space
[12] and D∗-metric space [16]. Following this, many authors have generalized S-metric spaces and obtained various
results related to the existence of fixed points, see [10, 13, 17]

Inspired by [1], the authors in [18] motivated the study of Sb-metric space as a generalization of b-metric spaces
and presented some fixed point results under various natures of contractions in complete Sb-metric spaces.

In [4], the authors introduced C∗-algebra-valued S-metric spaces and proved Banach contraction along with a
coupled fixed point theorem in such spaces.

In this paper, we first introduce C∗-algebra-valued Sb-metric spaces and present some fixed point results for
maps defined in this space. Finally, we choose the problem of existence and uniqueness of solutions of a specific
type of integral equation to demonstrate the results detailed in the paper.

2. Basic Definitions

For the reader’s convenience, we recall the following definitions and notations which will be needed in the sequel:
We start by reviewing some facts about C∗-algebras [11]; Suppose that A is an unital C∗-algebra with unit

I. Set Ah = {a ∈ A : a = a∗}. We say that a ∈ A is a positive element, denote by a ≥ 0A, if a = a∗ and
σ(a) ⊆ [0,∞), where 0A is the zero element in A and σ(a) is the spectrum of a.
There is a natural partial ordering on Ah given by a ≤ b if and only if b− a ≥ 0A. From now on, we will denote by
A+ the set {a ∈ A : a ≥ 0A} and by A′ the set {a ∈ A : ab = ba , ∀b ∈ A}.

Definition 2.1. [8] Suppose X be a nonempty set, and A be a C∗-algebra. Let A ∈ A′ be such that A ≥ I. A
mapping db : X × X → A is called a C∗-algebra-valued b-metric on X if the following conditions hold for all
x, y, z ∈ A:

(1) db(x, y) ≥ 0A for all x and y in X and db(x, y) = 0 ⇔ x = y;

(2) db(x, y) = db(y, x);

(3) db(x, y) ≤ A[db(x, z) + db(z, y)].

The triplet (X ,A, db) is called a C∗-algebra-valued b-metric space with coefficient A.

Definition 2.2. [4] Let X be a nonempty set. We say that a mapping S : X × X × X → A is C∗-algebra-valued
S-metric if, for every x, y, z, a ∈ X we have:

(1) S(x, y, z) ≥ 0A;

(2) S(x, y, z) = 0A if and only if x = y = z;

(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

furthermore (X ,A, S) is called a C∗-algebra-valued S-metric spaces.

Definition 2.3. [18] Let X be a nonempty set and s ≥ 1 be a given number. A function Sb : X 3 → [0,∞) is said
to be a Sb-metric if and only if for all x, y, z, t ∈ X , the following conditions hold:

(1) Sb(x, y, z) = 0 if and only if x = y = z;

(2) Sb(x, y, z) ≤ s[Sb(x, x, t) + Sb(y, y, t) + Sb(z, z, t)]

the pair (X , Sb) is called an Sb-metric space.

Definition 2.4. A Sb-metric Sb is said to be symmetric if

Sb(x, x, y) = Sb(y, y, x), for all x, y ∈ X .

Now, we define the concept of C∗-algebra-valued Sb-metric space. Its concept is motivated by the above notions:

Definition 2.5. Let X be a nonempty set and A ∈ A′ such that A ≥ I. Let the mapping Sb : X × X × X → A
satisfies:

(1) Sb(x, y, z) ≥ 0A for all x, y, z ∈ X ;

(2) Sb(x, y, z) = 0A if and only if x = y = z;
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(3) Sb(x, y, z) ≤ A[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)] for all x, y, z, a ∈ X .

Then Sb is said to be C∗-algebra-valued Sb-metric on X and (X ,A, Sb) is said to be a C∗-algebra valued Sb-metric
space.

Now, we give an important property which played a major role in the study of the new space:

Definition 2.6. A C∗-algebra-valued Sb-metric Sb is said to be symmetric if

Sb(x, x, y) = Sb(y, y, x), for all x, y ∈ X .

Example 2.1. Let X = R and A = M2(R) be all 2 × 2-matrices with the usual operations of addition, scalar
multiplication and matrix multiplication. It is clear that

∥A∥ =
( 2∑
i,j=1

|aij |2
) 1

2

,

defines a norm on A where A = (aij) ∈ A. ∗ : A → A defines an involution on A where A∗ = A. Then A is a
C∗-algebra. For A = (aij) and B = (bij) in A, a partial order on A can be given as follows:

A ≤ B ⇔ (aij − bij) ≤ 0, ∀i, j = 1, 2.

Let (X, d) be a b-metric space with b ≥ 1 and Sb : X ×X ×X → M2(R) be defined by

Sb(x, y, z) =

[
d(x, z) + d(y, z) 0

0 d(x, z) + d(y, z)

]
,

then it is a C∗-algebra-valued Sb-metric space. Now, we check the condition (3) of Definition 2.5:

Sb(x, y, z) =

[
d(x, z) + d(y, z) 0

0 d(x, z) + d(y, z)

]
≤ b

[
d(x, a) + d(z, a) 0

0 d(x, a) + d(z, a)

]
+ b

[
d(y, a) + d(z, a) 0

0 d(y, a) + d(z, a)

]
= b

[
d(x, a) 0

0 d(x, a)

]
+ b

[
d(y, a) 0

0 d(y, a)

]
+ 2b

[
d(z, a) 0

0 d(z, a)

]
≤ 2b

[
d(x, a) 0

0 d(x, a)

]
+ 2b

[
d(y, a) 0

0 d(y, a)

]
+ 2b

[
d(z, a) 0

0 d(z, a)

]
= b[2

[
d(x, a) 0

0 d(x, a)

]
+ 2

[
d(y, a) 0

0 d(y, a)

]
+ 2

[
d(z, a) 0

0 d(z, a)

]
]

= b[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)],

for all x, y, z ∈ X. So (X,A, Sb) is a C∗-algebra-valued Sb-metric space.

Example 2.2. Let X = R and A = M2(R) and (X, d) be a metric space. Let the function Sb : X ×X ×X → A
be defined as:

Sb(x, y, z) =

[
(d(x, y) + d(y, z) + d(x, z))p 0

0 (d(x, y) + d(y, z) + d(x, z))p

]
,

where p > 1 and x, y, z ∈ X . For A = (aij) and B = (bij) in A, a partial order on A can be given as follows:

A ≤ B ⇔ (aij − bij) ≤ 0, ∀i, j = 1, 2.

It can be shown that (X,A, Sb) is an C∗-algebra-valued Sb-metric with b = 23(p−1), but (X,A, Sb) is not necessarily
a C∗-algebra-valued S-metric.

Definition 2.7. Suppose that (X ,A, Sb) is a C∗-algebra-valued symmetric Sb-metric space. We call a mapping
T : X → X a C∗-algebra-valued contractive mapping on X , if there exists a B ∈ A with ∥B∥ < 1 such that

Sb(Tx, Tx, Ty) ≤ B∗Sb(x, x, y)B, ∀x, y ∈ X . (1)
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3. Main Results

Theorem 3.1. Let (X ,A, Sb) be a C∗-algebra-valued symmetric Sb-metric space and let T : X → X is a contractive
mapping. Then there exists a unique fixed point in X .

Proof. If B = 0, T maps X into a single point. Assume, without loss of generality, that B ̸= 0.
Choose an x0 ∈ X and set xn+1 = Txn = · · · = Tn+1x for n = 1, 2, . . . . For convenience, denote by B0 the

element Sb(x, x, Tx) in A. Also, in a C∗-algebra, for a, b ∈ A+ with a ≤ b, and for any x ∈ A, both x∗ax and x∗bx
are positive elements and x∗ax ≤ x∗bx. First we focus on existence of a fixed point. We choose x ∈ X and show
that {Tn(x)} is a Cauchy sequence with respect to A. By using induction, we have:

Sb(xn, xn, xn+1) = Sb(T
nx, Tnx, Tn+1x)

≤ B∗Sb(T
n−1x, Tn−1x, Tnx)B

≤ (B∗)2Sb(T
n−2x, Tn−2x, Tn−1x)B2

≤ . . .

≤ (B∗)nSb(x, x, Tx)B
n

= (Bn)∗B0B
n.

Therefore for any n ≥ 1 and p ≥ 1, it follows that

Sb(xn, xn, xn+p) = Sb(T
nx, Tnx, Tn+px)

≤ A(Sb(T
n, Tn, Tn+1) + Sb(T

n, Tn, Tn+1) + Sb(T
n+p, Tn+p, Tn+1))

≤ 2ASb(T
n, Tn, Tn+1) +A(2ASb(T

n+p, Tn+p, Tn+2) +ASb(T
n+1, Tn+1, Tn+2))

≤ 2ASb(T
n, Tn, Tn+1) +A2Sb(T

n+1, Tn+1, Tn+2)

+ 2A2(2ASb(T
n+p, Tn+p, Tn+3) +ASb(T

n+2, Tn+2, Tn+3))

...

≤ 2A1(B∗)nB0(B)n + 20A2(B∗)n+1B0B
n+1 + 2A3(B∗)n+2B0B

n+2 + 22A4(B∗)n+3B0B
n+3

+ 23A5(B∗)n+4B0B
n+4 + · · ·+ 2p−2Ap(B∗)n+p−1B0(B)n+p−1

= 2A(B∗)nB0B
n +

p∑
k=2

2k−2Ak(B∗)n+k−1B0(B)n+k−1

= 2((B∗)nA
1
2B0

1
2 )(B0

1
2A

1
2Bn) +

p∑
k=2

2k−2((B∗)n+k−1A
k
2 B0

1
2 )(B0

1
2A

k
2 Bn+k−1)

= 2(B0
1
2A

1
2Bn)∗(B0

1
2A

1
2Bn) +

p∑
k=2

2k−2(B0
1
2A

k
2 Bn+k−1)∗(B0

1
2A

k
2 Bn+k−1)

= 2|B0
1
2A

1
2Bn|2 +

p∑
k=2

2k−2|B0
1
2A

k
2 Bn+k−1|2

≤ 2∥B0
1
2A

1
2Bn∥2I +

p∑
k=2

2k−2∥B0
1
2A

k
2 Bn+k−1∥2I

≤ 2∥B0
1
2 ∥2∥A 1

2 ∥2∥Bn∥2I + ∥B0
1
2 ∥2

p∑
k=2

2k−2∥B∥2(n+k−1)∥A∥kI

= 2∥B0∥∥A
1
2 ∥2∥Bn∥2I + ∥B0∥

p−1∑
k=1

2k−1∥B∥2(n+k)∥A∥k+1I

≤ 2∥B0∥∥A
1
2 ∥2∥B∥2nI + ∥B0∥2k−1 ∥B∥2(n+p)∥A∥p

∥B∥2 − ∥B∥4∥A∥
I −→ 0 (n → ∞).

Where B0 = Sb(x, x, Tx). So {Tn(x)} is a Cauchy sequence with respect to A, and by completeness of (X ,A, Sb)
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there exists x0 ∈ X such that lim
n→∞

Tn(x) = x0. Since

0 = Sb(Tx0, Tx0, x0)

≤ B∗Sb(T
n−1x, Tn−1x, Tnx)B

≤ A[Sb(Tx0, Tx0, Txn) + Sb(Tx0, Tx0, Txn) + Sb(x0, x0, xn)]

≤ AB∗Sb(x0, x0, xn)B +AB∗Sb(x0, x0, xn)B +ASb(x0, x0, xn) −→ 0 (n → ∞),

we thus conclude that Tx0 = x0, i.e., x0 is a fixed point of T .
Now suppose there exist u, v ∈ X such that u = T (u) and v = T (v). Since T is a C∗-algebra-valued contractive

mapping, we have
0 ≤ Sb(u, u, v) = Sb(Tu, Tu, Tv) ≤ B∗Sb(u, u, v)B,

Since ∥B∥ < 1, we have

0 ≤ ∥Sb(u, u, v)∥ = ∥Sb(Tu, Tu, Tv)∥
≤ ∥B∗Sb(u, u, v)B∥
≤ ∥B∗∥∥Sb(u, u, v)∥∥B∥
= ∥B∥2∥Sb(u, u, v)∥
< ∥Sb(u, u, v)∥.

However, this is impossible, so Sb(u, u, v) = o and u = v. Thus the fixed point is unique. □

The example below is a simple example about Theorem 3.1:

Example 3.1. Let (X,A, Sb) be as in Example 2.1. Define a map T : X → X by T (x) = x
8 . Since

Sb(Tx, Tx, Ty) = Sb(
x

8
,
x

8
,
y

8
)

=

[
1
4 |x− y| 0

0 1
4 |x− y|

]
≤

[
1√
8

0

0 1√
8

] [
2|x− y| 0

0 2|x− y|

] [ 1√
8

0

0 1√
8

]
,

where A =

[
1√
8

0

0 1√
8

]
and ∥A∥ = 1

2 < 1, then T is a C∗-algebra-valued contractive mapping. Moreover, T satisfies

the hypothesis of Theorem 3.1. so 0 is the unique fixed point of T .

We now have the following extension of Theorem 3.1.

Corollary 3.2. Let (X ,A, Sb) be a complete C∗-algebra valued Sb-metric space. Suppose T : X → X satisfies

∥Sb(Tx, Tx, Ty)∥ ≤ ∥B∥∥Sb(x, x, y)∥,

where B ∈ A′
+ with ∥B∥ < 1, for all x, y ∈ X . Then there exists a unique fixed point in X .

Theorem 3.3. Let (X ,A, Sb) be a complete C∗-algebra-valued Sb-metric space. Suppose the mapping T : X → X
satisfies:

Sb(Tx, Ty, Tz) ≤ B(Sb(x, x, Tx) + Sb(y, y, Ty) + Sb(z, z, Tz)), ∀x, y, z ∈ X (2)

where B ∈ A′
+ and ∥B∥ < 1

3 and B ̸= 1
3A . Then there exists a unique fixed point in X .

Proof. For convenience, and without loss of generality, we assumeB ̸= 0. Notice thatB ∈ A′
+, andB(Sb(x, x, Tx)+

Sb(y, y, Ty) + Sb(z, z, Tz)) is also a positive element.
Choose x0 ∈ X and set xn+1 = Txn = Tn+1x0, n = 1, 2, . . . . Let B0 denote the element d(x1, x0) in A, and

Sbn = S(xn, xn, xn+1).

Sbn = Sb(xn, xn, xn+1)

= Sb(Txn−1, Txn−1, Txn)

≤ B(Sb(xn−1, xn−1, Txn−1) + Sb(xn−1, xn−1, Txn−1) + Sb(xn, xn, Txn))

= B(2Sb(xn−1, xn−1, Txn−1) + Sb(xn, xn, Txn))

= B(2Sb(xn−1, xn−1, xn) + Sb(xn, xn, xn+1))

= B(2Sbn−1
+ Sbn).
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Hence (I −B)Sbn ≤ 2BSbn−1 . Thus

Sbn ≤ 2B

1−B
Sbn−1

,

such that ∥B∥ < 1
3 . So

Sbn ≤ 2(I −B)−1BSbn−1
= tSbn−1

.

Let t = 2(I −B)−1B. By repeating this process, we obtain

Sbn ≤ tnSb0 .

Therefore, limn→∞ Sbn = 0. Now, we prove that {xn} is a Cauchy sequence. It follows from (2) that for n,m ∈ N

Sb(xn, xn, xm) = Sb(T
nx0, T

nx0, T
mx0)

= Sb(Txn−1, Txn−1, Txm−1)

≤ B[2Sb(xn−1, xn−1, Txn−1) + Sb(xm−1, xm−1, Txm−1)]

= B[2Sb(xn−1, xn−1, xn) + Sb(xm−1, xm−1, xm)]

= B(2Sbn−1 + Sbm−1).

Hence,
∥Sb(xn, xnxm)∥ ≤ ∥B∥∥2Sbn−1

+ Sbm−1
∥.

Since limn→∞ Sbn = 0, for every ϵ > 0, we can find N such that ∥Sbn−1∥ < ϵ
4 and ∥Sbm−1

∥ < ϵ
2 for all n,m > N .

Thus, we obtain ∥2Sbn−1 + Sbm−1∥ ≤ 2 ϵ
4 + ϵ

2 = ϵ.
As ∥B∥ < 1 it follows that ∥Sb(xn, xn, xm)∥ < ϵ for all n,m > N . Therefore, {xn} is a Cauchy sequence in X

and limn→∞ Sb(xn, xn, xm) = 0. Since X is complete, there exists x ∈ X such that

lim
n→∞

Sb(xn, xn, u) = lim
m,n→∞

(xn, xn, u) = Sb(u, u, u) = 0. (3)

Now, we prove that Tu = u. For any n ∈ N

Sb(u, u, Tu) = A[Sb(u, u, xn+1) + Sb(u, u, xn+1) + Sb(Tu, Tu, xn+1)]

= A[2Sb(u, u, xn+1) + Sb(Tu, Tu, Txn)]

≤ A[2Sb(u, u, xn+1) +B(2Sb(u, u, Tu) + Sb(xn, xn, Txn))]

= 2ASb(u, u, xn+1) + 2ABSb(u, u, Tu) +ABSb(xn, xn, Txn).

Therefore,
(1− 2AB)Sb(u, u, Tu) ≤ 2ASb(u, u, xn+1) +ABSb(xn, xn, Txn).

So

Sb(u, u, Tu) ≤
2A

(1− 2AB)
Sb(u, u, xn+1) +

AB

(1− 2AB)
Sb(xn, xn, Txn).

Since Sb(xn, xn, Txn) → Sb(u, u, Tu) as n → ∞, we obtain

∥Sb(u, u, Tu)∥ ≤ ∥ 2A

1− 2AB
∥∥Sb(u, u, xn+1)∥+ ∥ AB

1− 2AB
∥∥Sb(u, u, Tu)∥.

Therefore,

∥1− AB

1− 2AB
∥∥Sb(u, u, Tu)∥ ≤ ∥ 2A

1− 2AB
∥∥Sb(u, u, xn+1)∥,

and hence,

∥Sb(u, u, Tu)∥ ≤ ∥ 2A

1− 3AB
∥∥Sb(u, u, xn+1)∥ → 0, (as n → ∞).

Since B ̸= 1
3A and from (3), we have Sb(u, u, Tu) = 0, which implies Tu = u, i.e., u is a fixed point of T . Now

suppose there exist u, v ∈ X such that Tu = u and Tv = v. Then as (2), we get

Sb(u, u, v) = Sb(Tu, Tu, Tv)

≤ B[Sb(u, u, Tu) + Sb(u, u, Tu) + Sb(v, v, Tv)]

= 2BSb(u, u, Tu) +BSb(v, v, Tv)

= 2BSb(u, u, u) +BSb(v, v, v)

= 0.

Therefore, u = v. i.e., the fixed point of T is unique. □
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4. Application

First, consider the following example which will be needed in the next theorem.

Example 4.1. Let X = L∞(E) and H = L2(E), where E is Lebesque measurable set. Suppose L(H) denote the
set of bounded linear operators on hilbert space H. Clearly L(H) is a C∗-algebra with usual operator norm.

Define Sb : X × X × X → L(H) by Sb(f, g, h) = π(|f−h|+|g−h|)p , for all f, g, h,∈ X , where πh : H → H
is multiplication operator, πh(φ) = h.φ for φ ∈ H, and p > 1. Then Sb is a C∗-algebra-valued Sb-metric and
(X , L(H), Sb) is a complete C∗-algebra-valued Sb-metric space.

Let {fn}∞n=1 in X be a Cauchy sequence with respect to L(H), i.e., for any p ∈ N,

∥Sb(fn+m, fn+m, fn)∥ → 0, (n → ∞).

Now,

∥Sb(fn+m, fn+m, fn)∥ = ∥π(|fn+m−fn|+|fn+m−fn|)p∥
= ∥π(2|fn+m−fn|)p∥
= ∥2(fn+m − fn)∥p∞ → 0, (n → ∞).

Then {fn}∞n=1 is a Cauchy sequence in the space X . Since X is complete C∗-algebra-valued Sb-metric space, there
exists f ∈ X such that

∥fn − f∥p∞ → 0 (n → ∞).

Therefore,

∥Sb(fn, fn, f)∥ = ∥π(|fn−f |+|fn−f |)p∥
= ∥2(fn − f)∥p∞
= 2p−1∥(fn − f)∥p∞ + 2p−1∥(fn − f)∥p∞ → 0 (n → ∞).

Hence the sequence {fn}∞n=1 converges to the function f in X with respect to L(H). Thus, (X , L(H), Sb) is complete
with respect to L(H).

As application of contractive mapping theorem on complete C∗-algebra-valued Sb-metricspace, existence and
uniqueness results for a type of integral equation and operator equation are given.

Theorem 4.1. Consider the integral equation

x(t) =

∫
E

K(t, s, x(s)) + g(t), t ∈ E,

where E is the Lebesque measurable set. Assume that the following conditions hold:

(1) K : E × E × R → R is integrable and g ∈ L∞(E).

(2) there exists a continuous function ϕ : E × E → R and k ∈ (0, 1) such that

|K(t, s, u)−K(t, s, v)| ≤ k|ϕ(t, s)(u− v)|,

for t, s ∈ E and u, v ∈ R.

(3) supt∈E

∫
E
|ϕ(t, s)|ds ≤ 1.

Then the integral equation has a unique solution x∗ in L∞(E).

Proof. Let X = L∞(E) and H = L2(E), where E is Lebesgue measurable set. Let Sb be as defined in Example
4.1. Then Sb is a C∗-algebra-valued Sb-metric and (X , L(H), Sb) is a complete C∗-algebra-valued Sb-metric space
with respect to L(H).
Define T : L∞(E) → L∞(E) by

Tx(t) =

∫
E

K(t, s, x(s))ds+ g(t), (t ∈ E).
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Set A = kI. Then A ∈ L(H)+ and ∥A∥ = k < 1. For any h ∈ H,

∥Sb(Tx, Tx, Ty)∥ = sup
∥h∥=1

< π(|Tx−Ty|+|Tx−Ty|)ph, h >

= sup
∥h∥=1

< π(2|Tx−Ty|)ph, h >

= sup
∥h∥=1

< 2p|Tx− Ty|ph, h >

= sup
∥h∥=1

∫
E

(2p|Tx− Ty|)h(t).h(t)dt

≤ 2p sup
∥h∥=1

∫
E

[

∫
E

|K(t, s, x(s))−K(t, s, y(s))|]p|h(t)|2dt

≤ 2p sup
∥h∥=1

∫
E

[

∫
E

k|ϕ(t, s)(x(s)− y(s))|ds]p|h(t)|2dt

≤ 2pkp sup
∥h∥=1

∫
E

[

∫
E

|ϕ(t, s)|ds]p|h(t)|2dt.∥x− y∥p∞

≤ k sup
t∈E

∫
E

|ϕ(t, s)|ds. sup
∥h∥=1

∫
E

|h(t)|2dt2p∥x− y∥p∞

≤ 2pk∥x− y∥p∞
= k∥2(x− y)∥p∞
= k∥π(|x−y|+|x−y|)p∥
= ∥A∥∥Sb(x, x, y)∥.

Since ∥A∥ < 1, using Corollary 3.2, the integral equation has a unique solution in L∞(E). □

5. Conclusions

In this paper, we study whether there are correspondence of some metric and fixed point properties in Sb-metric
spaces taking the domain set of Sb-metric function in which A is a C∗-algebra-valued set. For this purpose, we
first present C∗-algebra-valued Sb-metric space on the set having this structure by applying the properties of this
algebraic concept. This specified structure is important in terms of integrating some metric constructions of fixed
point theory and algebraic topology.
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