$K$-contact generalized square Finsler manifolds

Document Type : Original Article

Authors

Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran

Abstract

We study almost contact generalized square Finsler manifolds and introduce the notion of $K$-contact Finsler structures. Then, we characterize generalized square $K$-contact almost contact manifolds. As an application, we show that every $3$-dimensional Lie group admits a left-invariant generalized square Finsler structure.

Keywords

Main Subjects


[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, vol. 203 of Progress in Mathematics, Birkh¨auser Boston, Ltd., Boston, MA, second ed., 2010.
[2] G. Calvaruso, Three-dimensional homogeneous almost contact metric structures, J. Geom. Phys., 69 (2013), pp. 60–73.
[3] S.-S. Chern and Z. Shen, Riemann-Finsler geometry, vol. 6 of Nankai Tracts in Mathematics, World Sci[1]entific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
[4] H. Geiges, A brief history of contact geometry and topology, Expo. Math., 19 (2001), pp. 25–53.
[5] J.-B. Jun, I. B. Kim, and U. K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J., 34 (1994), pp. 293–301.
[6] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), pp. 293–329.
[7] X. Mo, On some Finsler metrics of constant (or scalar) flag curvature, Houston J. Math., 38 (2012), pp. 41–54.
[8] D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math., 42 (1998), pp. 243–256.
[9] E. Peyghan, A. Naderifard, and A. Tayebi, Almost paracontact structures on tangent sphere bundle, Int. J. Geom. Methods Mod. Phys., 10 (2013), pp. 1320015, 11.
[10] E. Peyghan and A. Tayebi, Almost paracontact structure in Finslerian indicatrix, An. S¸tiint¸. Univ. “Ovid[1]ius” Constant¸a Ser. Mat., 19 (2011), pp. 151–162.
[11] Z. Shen, Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001.
[12] T. Tabatabaeifar, B. Najafi, and M. Rafie-Rad, On almost contact Finsler structures, Int. J. Geom. Methods Mod. Phys., 17 (2020), pp. 2050126, 15.