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ABSTRACT: We study almost contact generalized square Finsler manifolds and
introduce the notion of K-contact Finsler structures. Then, we characterize gener-
alized square K-contact almost contact manifolds. As an application, we show that
every 3-dimensional Lie group admits a left-invariant generalized square Finsler
structure.
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1. Introduction

Contact geometry was first defined in 1872 by the well-known mathematician Sophus Lie while solving partial
differential equations. It has been used in thermodynamics, mechanics, optics, control theory, and low-dimensional
topology [4]. Contact structure corresponds to the symplectic structure. Contact geometry and Riemannian
geometry are related by considering the compatibility metric condition. In other words, the contact manifold
(M2n+1, η) is equipped with the Riemannian metric g if it satisfies dη(S, T ) = g(S, φT ), where φ is a (1, 1)-tensor
field. Contact geometry with a compatible Riemannian metric is called Riemannian contact geometry [1, 9, 10].

In [12], Tabatabaeifar, Najafi, and Rafie-Rad introduced almost contact Finsler manifolds (briefly, ACF-manifolds).
They characterized almost contact Randers metrics. Generalized square Finsler manifolds are a natural generaliza-
tion of two important classes of Finsler manifolds, namely, Randers manifolds and square Finsler manifolds [11].
First, we characterize ACF-generalized square manifolds.
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Theorem 1.1. Suppose N is a manifold with an AC-structure (ξ, η, φ) and F = α + εβ + κβ2/α is a generalized
square Finsler metric on N , where ε and κ are constants. Then (N,F, ξ, η, φ) is an ACF-manifold if and merely if
(N,α, ξ, η, φ) is an ACR-manifold and β = λη, where λ(x) is determined by

∀x ∈ N, κλ2(x) + ελ(x) + 1− F
(
x, ξ(x)

)
= 0. (1)

In [12], the authors considered an important class of ACF-manifolds, i. e., cosymplectic Finsler manifold and
proved that such a manifold of constant flag curvature has vanishing flag curvature. It is natural to think of studying
other classes of almost contact Riemannain manifolds (briefly, ACR-manifolds) and developing these classes in the
setting of ACF-manifolds.

Let N be an odd-dimensional manifold. The AC-structure consists of a triplet (ξ, η, φ), where ξ, η and φ, are
a vector field, a 1-form and a (1, 1)-tensor on N , respectively, such that they satisfy the specific conditions. Two
important classes of ACR-manifolds are the class of Sasakian manifolds and the class of K-contact manifolds. It is
known that the former class is a proper subclass of the latter one. These two classes are the same on 3-dimensional
manifolds [5]. Due to this generality of the class of K-contact ACR-manifolds, we decide to generlaize this notion
to the setting of ACF-manifolds in this paper.

In Section 4, we first define K-contact ACF-manifolds. Then, we characterize K-contact generalized square
Finsler metrics as follows.

Theorem 1.2. Suppose (N,F = α + εβ + κβ2/α, ξ, η, φ) is a ACF-manifold, where ε and κ are constants. Then
(N,F, ξ, η, φ) is a K-contact ACF-manifold if and merely if (N,α, ξ, η, φ) is a K-contact ACR-manifold and λ given
by (1) is constant along the integral curves of ξ.

D. Perrone proved that every 3-dimensional simply connected non-compact homogeneous contact Riemannian
manifold is a Lie group with a left-invariant contact Riemannian structure [8]. Milnor classified Riemannian contact
structures [6]. Milnor’s classification does not include all ACR- manifolds. G. Calvaruso replaced the condition
η ∧ dηn ̸= 0, which is used in Milnor’s classification, by dη(·, ξ) = 0 and extended Milnor’s classification to all
ACR-manifolds [2].

In Section 5, we consider left-invariant ACF-square structures (F, ξ, η, φ) on 3-dimensional Lie groups, where
the 1-form η is not contact. Then, we classify all 3-dimensional left-invariant ACF-generalized square Lie groups
in both cases unimodular or non-unimodular.

Theorem 1.3. Suppose (F = α + εβ + κβ2

α , ξ, η, φ) is a left-invariant generalized square ACF-structure on a
unimodular Lie group G described by (21) with σ1 = 0. If dη(·, ξ) = 0, then G is one of the following

(a) If I > 0, then G is Ẽ(2),

(b) If I < 0, then G is E(1, 1),

(c) If I = 0 and g is not abelian, then G is H,

(d) If I = 0 and g is abelian, then G is R3,

where I = σ2σ3, and Ẽ(2), E(1, 1), and H are the universal covering group of rigid motions of Euclidean 2-space,
the group of rigid motions of Minkowski 2-space and the Heisenberg group, respectively.

As a result, any 3-dimensional unimodular Lie algebra g admits a left-invariant generalized square ACF-structure
(F, ξ, η, φ) with dη(·, ξ) = 0.

2. Preliminaries

Let N be an n-dimensional C∞ manifold, TN =
⋃

x∈N TxN the tangent bundle and TN0 := TN − {0} the slit
tangent bundle. Let (N,F ) be a Finsler manifold. The following quadratic form gy : TxN × TxN → R is called the
fundamental tensor of F

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxN.

Let x ∈ N and Fx := F |TxN . Non-Euclidean feature of Fx is measured by Cy : TxN × TxN × TxN → R defined by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxN.

The family C := {Cy}y∈TN0 is called the Cartan torsion.
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Assume N is a (2n + 1)-dimensional manifold. The AC-structure consists of a triplet (ξ, η, φ), where ξ, η and
φ, are a 1-form, a vector field, and a (1, 1)-tensor on N , respectively, with the following conditions:

φ(ξ) = 0, η(ξ) = 1, φ2(S) = −S + η(S)ξ,

where S ∈ TxN . The manifold N with AC-structure (ξ, η, φ) is an AC-manifold. For any AC-structure, conditions
are established

a) η( φ) = 0,

b) The rank of linear mapping φ is equal to 2n,

c) φ3 = −φ,

An AC-manifold (N, ξ, η, φ) is said to be compatible with a Riemannian metric α on N if the following holds good

a(φS, φT ) = a(S, T )− η(S)η(T ), S, T ∈ TxN, x ∈ N, (2)

where a(·, ·) is the fundamental tensor of α. In this case, (α, ξ, η, ϕ) is named an ACR-structure on N . If we replace
φS with S in equation (2), we obtain

a(φ(S), S) = 0.

Moreover, if we put S = T = ξ in (2), we have α(ξ) = 1, or equivalently ξ is a unit vector field.

Let (N,F ) be a Finsler manifold and AC-structure (ξ, η, φ) on N and S1 be the unit circle in R2 and define{
ψ : S1 × TxN −→ TxN

(θ, y) 7−→ θ · y,

where θ · y := sin(θ)φx(y) + cos(θ)y.

In [12], the authors define almost contact Finsler manifolds (briefly ACF-manifolds) as follows.

Definition 2.1. Let (ξ, η, φ) be an AC-structure and F be a Finsler metric on a manifold N . Then the quadruplet
(F, ξ, η, φ) is called an ACF-structure on N if F is a compatible Finsler metric, i.e.,

∀θ ∈ S1, ∀y ∈ ker(ηx), F (x, θ · y) = F (x, y), (3)

∀S ∈ TxN, gξ(ξ, S) = F 2(ξ)η(S). (4)

In this case, the quintuple (N,F, ξ, η, φ) is called an ACF-manifold.

In [12], the authors proved the following.

Theorem 2.2. Let (F, ξ, η, φ) be an ACF-structure on a manifold N . Then for every y ∈ ker(ηx) and S, T ∈ TxN ,
the following statements are equivalent.

(a) gijφ
i
ky

kyj = 0, or gy(y, φ(y)) = 0,

(b) gimφ
m
j + gjmφ

m
i + 2Cijmφ

m
r y

r = 0, or gy(φS, T ) + gy(φT, S) + 2Cy(φ(y), S, T ) = 0.

3. Generalized square ACF-metrics

Let N be a manifold. An (α, β)-metric is a scalar function on the tangent space TN defined by F := αϱ(s), s = β/α,
in which ϱ = ϱ(s) is C∞ on (−b0, b0) with certain regularity, α =

√
aijyiyj is a Riemannian metric, β = bi(x)y

i is a
1-form on a manifold N . Here, we consider the class of the generalized square metrics given by ϱ(s) = 1+ εs+κ s2,
i.e.,

F = α+ εβ + κ
β2

α
, (5)

where ε and κ are constants. First, we characterize generalized square ACF-manifolds.

Theorem 3.1. Suppose (ξ, η, φ) is an AC-structure and F is a generalized square metric on a manifold N given
by (5). Then, (N,F, ξ, η, φ) is an ACF-manifold if and merely if (N,α, ξ, η, φ) is an almost contact Riemannian
manifold (briefly ACR-manifold) and β = λη, where λ(x) is determined by

κλ2(x) + ελ(x) + 1− F (ξ(x)) = 0, (6)

for all x ∈ N .
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Proof. Let F be an ACF-metric. By (3) for every tangent vector y ∈ ker(ηx) and every θ ∈ S1, we have

α(x, θ · y) + εβ(θ · y) + κ
β2(θ · y)
α(x, θ · y)

= α(x, y) + εβ(y) + κ
β2(y)

α(x, y)
. (7)

Taking the irrational and rational parts of (7), we get

α(x, θ · y) + κ
β2(θ · y)
α(x, θ · y)

= α(x, y) + κ
β2(y)

α(x, y)
, (8)

and

β(θ · y) = β(y). (9)

Letting θ = π
2 in (9), we obtain

β(φx(y)) = β(y). (10)

Applying d
dθ on (9), we get

− sin θ β(y) + cos θ β(φx(y)) = 0. (11)

By putting θ = 0 in (11) and using (10), one can conclude β(y) = 0 for every y ∈ ker(ηx). Thus ker(η) = ker(β),
which implies that η and β are linearly dependent at each point. Thus, for some scalar function λ = λ(x) on N ,
we have

β = λη. (12)

It follows from (8), (10), and (12) that

α(x, θ · y) = α(x, y), ∀y ∈ ker(ηx).

It is well-known that the fundamental tensor of a generalized square metric F given by (5) is in the following form
[11]

gy(S, T ) =

(
α2(y)− κβ2(y)

)
F (y)

α3(y)
a(S, T ) +

6κF (y) +
(
ε2 − 4κ

)
α(y)

α(y)
β(S)β(T )

+
εα3(y)− 3εκα(y)β2(y)− 4κ2β3(y)

α4(y)

{
β(S)a(y, T ) + β(T )a(y, S)− β(y)

α2(y)
a(y, S)a(y, T )

}
. (13)

Putting y = S = T = ξ(x) in (13) infer

F 2(ξ(x)) =

(
α2(ξ(x))− κλ2(x)

)
F (ξ(x))

α3(ξ(x))
α2(ξ(x)) +

6κF (ξ(x)) +
(
ε2 − 4κ

)
α(ξ(x))

α(ξ(x))
λ2(x)

+
εα3(ξ(x))− 3εκλ2(x)α(ξ(x))− 4κ2λ3(x)

α4(ξ(x))
α2(ξ(x))λ(x). (14)

Similarly, by putting y = ξ(x) and T = ξ(x) in (13), we obtain

gξ(x)(ξ(x), S) =

(
α2(ξ(x))− κλ2(x)

)
F (ξ(x))

α3(ξ(x))
a(ξ(x), S) +

6κF (ξ(x)) +
(
ε2 − 4κ

)
α(ξ(x))

α(ξ(x))
λ2(x)η(S)

+
εα3(ξ(x))− 3εκλ2(x)α(ξ(x))− 4κ2λ3(x)

α4(ξ(x))
α2(ξ(x))λ(x)η(S). (15)

By (4), (14), and (15), we have

a(ξ(x), S) = α2(ξ(x))η(S),

which means that (N,α, ξ, η, φ) is an ACR-manifold. Hence, we get

α(x, ξ(x)) = η (ξ(x)) = 1. (16)

From (14) and (16), we conclude

F 2(ξ(x)) = (κλ2(x) + ελ(x) + 1)2,

from which, we get (6). □
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Corollary 3.2. Letting ε = 2 and κ = 1 in (5), we reach to the class of square Finsler metrics. Thus, a square

Finsler metric F = (α+β)2

α with an AC-structure (ξ, η, φ) on a manifold N is an ACF-manifold if and merely if

(N,α, ξ, η, φ) is an ACR-manifold and β = λη, where (λ(x) + 1)
2
= F (ξ(x)) for all x ∈ N .

If we put ε = 1 and κ = 0 in (5), then the generalized square metric F becomes a Randers metric. Consequently,
we revisit Theorem 1.3 of [12] with a slight improvement.

Theorem 3.3. Suppose F = α + β is a Randers metric, and (ξ, η, φ) is an AC-structure on a manifold N .
Then (N,F, ξ, η, φ) is an ACF-manifold if and merely if (N,α, ξ, η, φ) is an ACR-manifold and β = λη, where
λ(x) = F (x, ξ(x))− 1 for all x ∈ N .

Proof. In [12], it is proved that (F, ξ, η, φ) is an ACF-structure on N if and only if (α, ξ/α(ξ), α(ξ)η, φ) is an
ACR-structure on N , and β = λη, where λ(x) = F (x, ξ(x))− 1 for all x ∈ N (see Theorem 1.3 of [12]). By a direct
calculation, we have

λ(x) = F (x, ξ(x))− 1 = α(ξ(x)) + β(ξ(x))− 1 = α(ξ(x)) + λ(x)− 1.

Hence, we have
α(ξ(x)) = 1.

This completes the proof. □

Indeed, Theorem 3.3 proposes a way to construct more examples of ACF-structures using the standard changings
in the Finslerian world, such as Randers β-change.

Proposition 3.4. Let N be a manifold with an ACF-structure (F, ξ, η, φ). Then, the Randers β-change (N, F̄ =
F + β, ξ, η, φ) is an ACF-manifold provided that β = λη for some scalar function on N .

Proof. We want to show that F̄ is an ACF-metric. For every tangent vector y ∈ ker(ηx), we have F̄ (x, y) = F (x, y).
Therefore, F̄ satisfies (3).

It suffices to prove that F̄ satisfies (4). By Theorem 2.2, for every y ∈ ker(ηx), we have

gy(φy, y) = 0.

The fundamental tensor ḡy is as follows [3]

ḡy(S, T ) =
F̄ (y)

F (y)
gy(S, T ) +

(
1− F̄ (y)

F (y)

)
gy(y, S)gy(y, T )

F 2(y)
+

gy(y, S)β(T )

F (y)
+

gy(y, T )β(S)

F (y)
+ β(S)β(T ). (17)

Putting y = ξ(x) and S = T = ξ(x) in (17) yield

F̄ 2(ξ(x)) = (F (ξ(x)) + λ(x))
2
.

Also, by putting y = ξ(x) and T = ξ(x) in (17) and taking into account (4) for F , we have

gξ(x)(S, ξ(x)) = (F (ξ(x)) + λ(x))
2
η(S) = F̄ 2(ξ(x))η(S),

which means that F̄ is an ACF-metric. □

4. K-contact ACF-manifolds

The class of K-contact manifolds is a wealthy class of Riemannian manifolds. It is natural o study K-contact
Finsler manifolds. In this section, we first introduce K-contact ACF-manifolds and characterize generalized square
K-contact ACF-manifolds.

Definition 4.1. Suppose (N,F, ξ, η, φ) is an ACF-manifold such that the Reeb vector field ξ is a Killing vector filed

with respect to F , i.e., Lξ̂F = 0, where ξ̂ is the complete lift of ξ. In this case, we say (N,F, ξ, η, φ) is a K-contact
ACF-manifold.

In [7], X. Mo proves that the Lie derivative of an (α, β) metric F = αϱ(β/α) is obtained as follows

Lξ̂F = (ϱ− sϱ′)Lξ̂(α) + ϱ′Lξ̂(β). (18)
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Theorem 4.2. Let (N,F, ξ, η, ϕ) be a generalized square ACF-manifold. Then F is a K-contact ACF-metric if
and merely if (N,α, ξ, η, ϕ) is a K-contact Riemannian manifold and ξiλi = 0, where λi =

∂λ
∂xi and ξ = ξi ∂

∂xi .

Proof. First, we assume (N,α, ξ, η, φ) is a K-contact Riemannian manifold and ξiλi = 0. Since (N,α, ξ, η, φ) is
an ACR-manifold, then according to Theorem 3.1, (F, ξ, η, φ) is an ACF-structure on N . Moreover, it follows from
(18) and ξiλi = 0 that F is a K-contact Finsler metric. Hence, (N,F, ξ, η, φ) is a K-contact ACF-manifold.

Suppose (N,F, ξ, η, φ) is aK-contact ACF-manifold. By definition, we have Lξ̂F = 0. According to Theorem 3.1,

(N,α, ξ, η, φ) is an ACR-manifold. We know that

Lξ̂F = Lξ̂α+ εLξ̂β + κLξ̂(β
2/α).

Then we have

Lξ̂α+ εLξ̂β + κLξ̂(β
2/α) = 0. (19)

Taking the rational and irrational parts of the equation (19), we get

Lξ̂α+ κLξ̂(β
2/α) = 0,

and

Lξ̂β = 0. (20)

From (20), we conclude ξiλi = 0. A direct computation shows that

Lξ̂α+ κLξ̂(β
2/α) = (1− s2)Lξ̂α+ 2κsLξ̂β),

which, with the help of (20), implies that Lξ̂α = 0. Therefore, (N,α, ξ, η, φ) is a K-contact ACR- manifold. □

Since every square Finsler metric and Randers metric is a generalized square metric, we have the following two
immediate results.

Corollary 4.3. A square ACF- manifold (N, (α+β)2

α , ξ, η, φ) is K-contact if and merly if (N,α, ξ, η, φ) is K-contact
and ξiλi = 0.

Corollary 4.4. A Randers ACF- manifold (N,α + β, ξ, η, φ) is K-contact if and merely if (N,α, ξ, η, φ) is K-
contact and ξiλi = 0.

Remark 4.5. It is worth mentioning that for a Randers ACF- manifold (N,α+ β, ξ, η, φ), the condition ξiλi = 0
is equivalent to (Lξ̂F )(x, ξ(x)) = 0 for all x ∈ N .

Example 4.1. Let h(x, y) be a differentiable function on R3 satisfying the following:

|h(x, y)| < 1√
1 + 3y2 + y4

.

Let N = {(x, y, z) ∈ R3 | |h(x, y)| < 1√
1 + 3y2 + y4

}. Let us consider the 1-form, vector field and Riemannian

metric on N given by

ξ =
∂

∂z
, η = −ydx+ dz, α = η ⊗ η + dx⊗ dx+ dy ⊗ dy,

respectively. If the (1, 1)-tensor field φ on N is defined as

φ =

 0 1 0
−1 0 0
0 y 0

 ,
then (N,α, ξ, η, φ) is a K-contact Riemannian manifold. Suppose (N,F = α + β) is a Randers manifold, where
β = h(x, y)η. One can easily see that (N,α, ξ, η, φ) is an ACR-manifold. Thus, according to Theorem 3.3,
(N,F, ξ, η, φ) is an ACF-manifold. We can see Lξα = 0 and Lξβ = 0, and consequently Lξ̂F = 0. Hence ξ

is a Killing vector field of F . Therefore, (N,F, ξ, η, φ) is a K-contact ACF-manifold.

Inspired by Corollary 4.4, we close this section, by proposing a natural way to construct new examples of K-
contact ACF-manifolds using the Randers β-changes. It suffices to observe that if F̄ = F+β, then Lξ̂F̄ = Lξ̂F+Lξ̂β.

Proposition 4.6. Let (N,F, ξ, η, φ) and the Randers β-change (N, F̄ = F + β, ξ, η, φ) be an ACF-manifold. The
Randers β-change (N, F̄ = F+β, ξ, η, φ) is a K-contact ACF-manifold if and merely if (N,F, ξ, η, φ) is a K-contact
ACF-manifold and ξiλi = 0.
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5. 3-Dimensional Left Invariant K-Contact Finsler Structures

Let (F, ξ, η, φ) be an ACF-structure on a 3-dimensional Lie group G. We say that (F, ξ, η, φ) is left-invariant, if for
every a ∈ G, the left translation along a, La : G −→ G is an ACF-isomorphism, i.e.,

La∗ ◦ φ = φ ◦ La∗ , L∗
a(F ) = F, La∗ξ = ξ, L∗

a(η) = η.

From [2], the Lie group G is called unimodular if, for every u ∈ g, we have tr(adu) = 0, where g is the Lie
algebra of G. In this case, it is well-known that the Lie algebra g admits an orthonormal basis {ξ, e, φe}, such that

[ξ, e] = σ3φe, [e, φe] = σ1ξ, [φe, ξ] = σ2e. (21)

Next, consider a left-invariant ACF-structure of the form (21). In [2], the authors prove that η is not a contact
form if and only if σ1 = 0. We get the following classification result.

Theorem 5.1. Suppose (F = α + εβ + κβ2

α , ξ, η, φ) is a left-invariant generalized square ACF-structure on a
unimodular Lie group G described by (21) with σ1 = 0. If dη(·, ξ) = 0, then G is one of the following

(a) If I > 0, then G is Ẽ(2),

(b) If I < 0, then G is E(1, 1),

(c) If I = 0 and g is not abelian, then G is H,

(d) If I = 0 and g is abelian, then G is R3,

where I = σ2σ3, and Ẽ(2), E(1, 1), and H are the universal covering group of rigid motions of Euclidean 2-space,
the group of rigid motions of Minkowski 2-space and the Heisenberg group, respectively.

Proof. By Theorem 3.1, we conclude that (α, ξ, η, φ) is a left-invariant ACR-structure on the 3-dimensional uni-
modular Lie group G. Now by Theorem 3.4 of [2], we get the proof. □

Proposition 5.2. Any 3-dimensional unimodular Lie algebra g admits a left-invariant generalized square ACF-
structure (F, ξ, η, φ) with dη(·, ξ) = 0.

The Lie group G is non-unimodular if there exists a tangent vector u ∈ g such that tr(adu) ̸= 0. In this case,
there exists an orthonormal basis {e1, e2, e3} of g, such that

[e1, e2] = νe2 + µe3, [e1, e3] = δe2 + γe3, [e2, e3] = 0, (22)

for some real constants ν, µ, γ, and δ satisfying conditions

ν + γ ̸= 0, νδ + µγ = 0. (23)

It is easy to see that the quantity

Q =
4(νγ − µδ)

(ν + γ)2
,

is an invariant of g. Indeed, if we denote g by g(ν,µ,δ,γ), then g(ν′,µ′,δ′,γ′) and g(ν,µ,δ,γ) are isomorphic Lie algebras
if and only if Q = Q′ (see [2] for more details).

Suppose (F = α + εβ + κβ2

α , ξ, η, φ) is a left-invariant generalized square ACF-structure on a non-unimodular
Lie group G described by (22) with dη(·, ξ) = 0. If ξ = cos θe2 + sin θe3, then an orthonormal basis (and so, a
φ-basis) of ker η is given by {E1 = e1, E2 = − sin θe2 + cos θe3}. From (23), we then easily obtain

[ξ, E1] = (µ cos2 θ + (γ − ν) sin θ cos θ − δ sin2 θ)E2 − (ν cos2 θ + (µ+ δ) sin θ cos θ + γ sin2 θ)ξ,

[ξ, E2] = 0,

[E1, E2] = (γ cos2 θ − (µ+ δ) sin θ cos θ + ν sin2 θ)E2 − (δ cos2 θ + (γ − ν) sin θ cos θ − µ sin2 θ)ξ.

We put

A : = γ cos2 θ − (µ+ δ) sin θ cos θ + ν sin2 θ,

B : = −(δ cos2 θ + (γ − ν) sin θ cos θ − µ sin2 θ),

C : = µ cos2 θ + (γ − ν) sin θ cos θ − δ sin2 θ.

By Theorem 3.1 and Theorem 4.3 of [2], we get the following.
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Theorem 5.3. Suppose (F = α + εβ + κβ2

α , ξ, η, φ) is a left-invariant generalized square ACF-structure on a 3-
dimensional non-unimodular Lie group G with the Lie algebra g described by (22), (23). Then, up to isomorphisms,
the following are all and the ones left-invariant ACF-structures (F, ξ, η, φ) on g, satisfying dη(·, ξ) = 0:

(a) [ξ, e] = νe+ µφe, [ξ, φe] = δe+ γφe, [e, φe] = 0,
for any value of ν, µ, δ, and γ satisfying (23).

(b) [ξ, e] = Cφe, [ξ, φe] = 0, [e, φe] = Aφe+Bξ, with A ̸= 0
for any value of α, µ, γ, and δ satisfying (23).

(c) [ξ, e] = ν cos θe, [ξ, φe] = 0, [e, φe] = ν sin θe, with (ν cos θ)2 + (ν sin θ)2 ̸= 0
only when ν ̸= 0, µ = γ = δ = 0.

Corollary 5.4. Any 3-dimensional non-unimodular Lie algebra g admits a left-invariant generalized square ACF-
structure (F, ξ, η, φ) with dη(·, ξ) = 0.
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