

AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 5(4) (2024) 329-336 https://doi.org/10.22060/AJMC.2023.22528.1166

Original Article

K-contact generalized square Finsler manifolds

Hannaneh Faraji^a, Behzad Najafi^{*}^a, Tayebeh Tabatabaeifar^a

^aDepartment of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran

ABSTRACT: We study almost contact generalized square Finsler manifolds and introduce the notion of K-contact Finsler structures. Then, we characterize generalized square K-contact almost contact manifolds. As an application, we show that every 3-dimensional Lie group admits a left-invariant generalized square Finsler structure.

Review History:

Received:04 July 2023 Revised:30 September 2023 Accepted:30 September 2023 Available Online:01 October 2024

Keywords:

Almost contact Finsler manifolds Randers metrics *K*-contact metrics Unimodular Lie groups Non-unimodular Lie groups

MSC (2020):

53B40; 53C60

1. Introduction

Contact geometry was first defined in 1872 by the well-known mathematician Sophus Lie while solving partial differential equations. It has been used in thermodynamics, mechanics, optics, control theory, and low-dimensional topology [4]. Contact structure corresponds to the symplectic structure. Contact geometry and Riemannian geometry are related by considering the compatibility metric condition. In other words, the contact manifold (M^{2n+1}, η) is equipped with the Riemannian metric g if it satisfies $d\eta(S, T) = g(S, \varphi T)$, where φ is a (1, 1)-tensor field. Contact geometry with a compatible Riemannian metric is called Riemannian contact geometry [1, 9, 10].

In [12], Tabatabaeifar, Najafi, and Rafie-Rad introduced almost contact Finsler manifolds (briefly, ACF-manifolds). They characterized almost contact Randers metrics. Generalized square Finsler manifolds are a natural generalization of two important classes of Finsler manifolds, namely, Randers manifolds and square Finsler manifolds [11]. First, we characterize ACF-generalized square manifolds.

*Corresponding author.

 $E\text{-}mail\ addresses:\ hanaaa.faraji@aut.ac.ir,\ behzad.najafi@aut.ac.ir,\ t.tabatabaeifar@aut.ac.ir,\ t.tabatab$

 $2783-2287/\textcircled{C} 2024 \ The \ Author(s). \ Published \ by \ Amirkabir \ University \ of \ Technology \ Press. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)$

Theorem 1.1. Suppose N is a manifold with an AC-structure (ξ, η, φ) and $F = \alpha + \varepsilon \beta + \kappa \beta^2 / \alpha$ is a generalized square Finsler metric on N, where ε and κ are constants. Then $(N, F, \xi, \eta, \varphi)$ is an ACF-manifold if and merely if $(N, \alpha, \xi, \eta, \varphi)$ is an ACR-manifold and $\beta = \lambda \eta$, where $\lambda(x)$ is determined by

$$\forall x \in N, \quad \kappa \lambda^2(x) + \varepsilon \lambda(x) + 1 - F(x, \xi(x)) = 0.$$
(1)

In [12], the authors considered an important class of ACF-manifolds, i. e., cosymplectic Finsler manifold and proved that such a manifold of constant flag curvature has vanishing flag curvature. It is natural to think of studying other classes of almost contact Riemannain manifolds (briefly, ACR-manifolds) and developing these classes in the setting of ACF-manifolds.

Let N be an odd-dimensional manifold. The AC-structure consists of a triplet (ξ, η, φ) , where ξ , η and φ , are a vector field, a 1-form and a (1, 1)-tensor on N, respectively, such that they satisfy the specific conditions. Two important classes of ACR-manifolds are the class of Sasakian manifolds and the class of K-contact manifolds. It is known that the former class is a proper subclass of the latter one. These two classes are the same on 3-dimensional manifolds [5]. Due to this generality of the class of K-contact ACR-manifolds, we decide to generalize this notion to the setting of ACF-manifolds in this paper.

In Section 4, we first define K-contact ACF-manifolds. Then, we characterize K-contact generalized square Finsler metrics as follows.

Theorem 1.2. Suppose $(N, F = \alpha + \varepsilon\beta + \kappa\beta^2/\alpha, \xi, \eta, \varphi)$ is a ACF-manifold, where ε and κ are constants. Then $(N, F, \xi, \eta, \varphi)$ is a K-contact ACF-manifold if and merely if $(N, \alpha, \xi, \eta, \varphi)$ is a K-contact ACR-manifold and λ given by (1) is constant along the integral curves of ξ .

D. Perrone proved that every 3-dimensional simply connected non-compact homogeneous contact Riemannian manifold is a Lie group with a left-invariant contact Riemannian structure [8]. Milnor classified Riemannian contact structures [6]. Milnor's classification does not include all ACR- manifolds. G. Calvaruso replaced the condition $\eta \wedge d\eta^n \neq 0$, which is used in Milnor's classification, by $d\eta(\cdot,\xi) = 0$ and extended Milnor's classification to all ACR-manifolds [2].

In Section 5, we consider left-invariant ACF-square structures (F, ξ, η, φ) on 3-dimensional Lie groups, where the 1-form η is not contact. Then, we classify all 3-dimensional left-invariant ACF-generalized square Lie groups in both cases unimodular or non-unimodular.

Theorem 1.3. Suppose $(F = \alpha + \varepsilon \beta + \kappa \frac{\beta^2}{\alpha}, \xi, \eta, \varphi)$ is a left-invariant generalized square ACF-structure on a unimodular Lie group G described by (21) with $\sigma_1 = 0$. If $d\eta(\cdot, \xi) = 0$, then G is one of the following

- (a) If I > 0, then G is $\tilde{E}(2)$,
- (b) If I < 0, then G is E(1, 1),
- (c) If I = 0 and \mathfrak{g} is not abelian, then G is H,
- (d) If I = 0 and \mathfrak{g} is abelian, then G is \mathbb{R}^3 ,

where $I = \sigma_2 \sigma_3$, and $\tilde{E}(2)$, E(1,1), and H are the universal covering group of rigid motions of Euclidean 2-space, the group of rigid motions of Minkowski 2-space and the Heisenberg group, respectively.

As a result, any 3-dimensional unimodular Lie algebra \mathfrak{g} admits a left-invariant generalized square ACF-structure (F,ξ,η,φ) with $d\eta(\cdot,\xi) = 0$.

2. Preliminaries

Let N be an n-dimensional C^{∞} manifold, $TN = \bigcup_{x \in N} T_x N$ the tangent bundle and $TN_0 := TN - \{0\}$ the slit tangent bundle. Let (N, F) be a Finsler manifold. The following quadratic form $\mathbf{g}_y : T_x N \times T_x N \to \mathbb{R}$ is called the fundamental tensor of F

$$\mathbf{g}_{y}(u,v) = \frac{1}{2} \frac{\partial^{2}}{\partial s \partial t} \Big[F^{2}(y + su + tv) \Big]_{s=t=0}, \quad u,v \in T_{x}N.$$

Let $x \in N$ and $F_x := F|_{T_xN}$. Non-Euclidean feature of F_x is measured by $\mathbf{C}_y : T_xN \times T_xN \times T_xN \to \mathbb{R}$ defined by

$$\mathbf{C}_{y}(u, v, w) := \frac{1}{2} \frac{d}{dt} \left[\mathbf{g}_{y+tw}(u, v) \right]_{t=0}, \quad u, v, w \in T_{x} N.$$

The family $\mathbf{C} := {\mathbf{C}_y}_{y \in TN_0}$ is called the Cartan torsion.

Assume N is a (2n + 1)-dimensional manifold. The AC-structure consists of a triplet (ξ, η, φ) , where ξ, η and φ , are a 1-form, a vector field, and a (1, 1)-tensor on N, respectively, with the following conditions:

$$\varphi(\xi) = 0, \quad \eta(\xi) = 1, \quad \varphi^2(S) = -S + \eta(S)\xi,$$

where $S \in T_x N$. The manifold N with AC-structure (ξ, η, φ) is an AC-manifold. For any AC-structure, conditions are established

- a) $\eta(\varphi) = 0$,
- b) The rank of linear mapping φ is equal to 2n,
- c) $\varphi^3 = -\varphi$,

An AC-manifold (N, ξ, η, φ) is said to be compatible with a Riemannian metric α on N if the following holds good

$$a(\varphi S, \varphi T) = a(S, T) - \eta(S)\eta(T), \quad S, T \in T_x N, \ x \in N,$$
(2)

where $a(\cdot, \cdot)$ is the fundamental tensor of α . In this case, $(\alpha, \xi, \eta, \phi)$ is named an *ACR-structure* on *N*. If we replace φS with *S* in equation (2), we obtain

$$a(\varphi(S), S) = 0$$

Moreover, if we put $S = T = \xi$ in (2), we have $\alpha(\xi) = 1$, or equivalently ξ is a unit vector field.

Let (N, F) be a Finsler manifold and AC-structure (ξ, η, φ) on N and S¹ be the unit circle in \mathbb{R}^2 and define

$$\begin{cases} \psi: \mathbb{S}^1 \times T_x N \longrightarrow T_x N \\ (\theta, y) \longmapsto \theta \cdot y, \end{cases}$$

where $\theta \cdot y := \sin(\theta)\varphi_x(y) + \cos(\theta)y$.

In [12], the authors define almost contact Finsler manifolds (briefly ACF-manifolds) as follows.

Definition 2.1. Let (ξ, η, φ) be an AC-structure and F be a Finsler metric on a manifold N. Then the quadruplet (F, ξ, η, φ) is called an ACF-structure on N if F is a compatible Finsler metric, i.e.,

$$\forall \theta \in \mathbb{S}^1, \ \forall y \in \ker(\eta_x), \quad F(x, \theta \cdot y) = F(x, y), \tag{3}$$

$$\forall S \in T_x N, \qquad g_{\xi}(\xi, S) = F^2(\xi)\eta(S). \tag{4}$$

In this case, the quintuple $(N, F, \xi, \eta, \varphi)$ is called an ACF-manifold.

In [12], the authors proved the following.

Theorem 2.2. Let (F, ξ, η, φ) be an ACF-structure on a manifold N. Then for every $y \in \ker(\eta_x)$ and $S, T \in T_xN$, the following statements are equivalent.

(a) $g_{ij}\varphi_k^i y^k y^j = 0$, or $\mathbf{g}_y(y,\varphi(y)) = 0$, (b) $g_{im}\varphi_j^m + g_{jm}\varphi_i^m + 2C_{ijm}\varphi_r^m y^r = 0$, or $\mathbf{g}_y(\varphi S, T) + \mathbf{g}_y(\varphi T, S) + 2\mathbf{C}_y(\varphi(y), S, T) = 0$.

3. Generalized square ACF-metrics

Let N be a manifold. An (α, β) -metric is a scalar function on the tangent space TN defined by $F := \alpha \varrho(s)$, $s = \beta/\alpha$, in which $\varrho = \varrho(s)$ is C^{∞} on $(-b_0, b_0)$ with certain regularity, $\alpha = \sqrt{a_{ij}y^iy^j}$ is a Riemannian metric, $\beta = b_i(x)y^i$ is a 1-form on a manifold N. Here, we consider the class of the generalized square metrics given by $\varrho(s) = 1 + \varepsilon s + \kappa s^2$, i.e.,

$$F = \alpha + \varepsilon \beta + \kappa \,\frac{\beta^2}{\alpha},\tag{5}$$

where ε and κ are constants. First, we characterize generalized square ACF-manifolds.

Theorem 3.1. Suppose (ξ, η, φ) is an AC-structure and F is a generalized square metric on a manifold N given by (5). Then, $(N, F, \xi, \eta, \varphi)$ is an ACF-manifold if and merely if $(N, \alpha, \xi, \eta, \varphi)$ is an almost contact Riemannian manifold (briefly ACR-manifold) and $\beta = \lambda \eta$, where $\lambda(x)$ is determined by

$$\kappa \lambda^2(x) + \varepsilon \lambda(x) + 1 - F(\xi(x)) = 0, \tag{6}$$

for all $x \in N$.

Proof. Let F be an ACF-metric. By (3) for every tangent vector $y \in \ker(\eta_x)$ and every $\theta \in \mathbb{S}^1$, we have

$$\alpha(x,\theta\cdot y) + \varepsilon\beta(\theta\cdot y) + \kappa \ \frac{\beta^2(\theta\cdot y)}{\alpha(x,\theta\cdot y)} = \alpha(x,y) + \varepsilon\beta(y) + \kappa \ \frac{\beta^2(y)}{\alpha(x,y)}.$$
(7)

Taking the irrational and rational parts of (7), we get

$$\alpha(x,\theta\cdot y) + \kappa \,\frac{\beta^2(\theta\cdot y)}{\alpha(x,\theta\cdot y)} = \alpha(x,y) + \kappa \,\frac{\beta^2(y)}{\alpha(x,y)},\tag{8}$$

and

$$\beta(\theta \cdot y) = \beta(y). \tag{9}$$

Letting $\theta = \frac{\pi}{2}$ in (9), we obtain

$$\beta(\varphi_x(y)) = \beta(y). \tag{10}$$

Applying $\frac{d}{d\theta}$ on (9), we get

$$-\sin\theta \ \beta(y) + \cos\theta \ \beta(\varphi_x(y)) = 0. \tag{11}$$

By putting $\theta = 0$ in (11) and using (10), one can conclude $\beta(y) = 0$ for every $y \in \ker(\eta_x)$. Thus $\ker(\eta) = \ker(\beta)$, which implies that η and β are linearly dependent at each point. Thus, for some scalar function $\lambda = \lambda(x)$ on N, we have

$$\beta = \lambda \eta. \tag{12}$$

It follows from (8), (10), and (12) that

 $\alpha(x, \theta \cdot y) = \alpha(x, y), \qquad \forall y \in \ker(\eta_x).$

It is well-known that the fundamental tensor of a generalized square metric F given by (5) is in the following form [11]

$$\mathbf{g}_{y}(S,T) = \frac{\left(\alpha^{2}(y) - \kappa\beta^{2}(y)\right)F(y)}{\alpha^{3}(y)}a(S,T) + \frac{6\kappa F(y) + \left(\varepsilon^{2} - 4\kappa\right)\alpha(y)}{\alpha(y)}\beta(S)\beta(T) \\ + \frac{\varepsilon\alpha^{3}(y) - 3\varepsilon\kappa\alpha(y)\beta^{2}(y) - 4\kappa^{2}\beta^{3}(y)}{\alpha^{4}(y)}\left\{\beta(S)a(y,T) + \beta(T)a(y,S) - \frac{\beta(y)}{\alpha^{2}(y)}a(y,S)a(y,T)\right\}.$$
 (13)

Putting $y = S = T = \xi(x)$ in (13) infer

$$F^{2}(\xi(x)) = \frac{\left(\alpha^{2}(\xi(x)) - \kappa\lambda^{2}(x)\right)F(\xi(x))}{\alpha^{3}(\xi(x))}\alpha^{2}(\xi(x)) + \frac{6\kappa F(\xi(x)) + \left(\varepsilon^{2} - 4\kappa\right)\alpha(\xi(x))}{\alpha(\xi(x))}\lambda^{2}(x) + \frac{\varepsilon\alpha^{3}(\xi(x)) - 3\varepsilon\kappa\lambda^{2}(x)\alpha(\xi(x)) - 4\kappa^{2}\lambda^{3}(x)}{\alpha^{4}(\xi(x))}\alpha^{2}(\xi(x))\lambda(x).$$

$$(14)$$

Similarly, by putting $y = \xi(x)$ and $T = \xi(x)$ in (13), we obtain

$$\mathbf{g}_{\xi(x)}(\xi(x),S) = \frac{\left(\alpha^2(\xi(x)) - \kappa\lambda^2(x)\right)F(\xi(x))}{\alpha^3(\xi(x))}a(\xi(x),S) + \frac{6\kappa F(\xi(x)) + \left(\varepsilon^2 - 4\kappa\right)\alpha(\xi(x))}{\alpha(\xi(x))}\lambda^2(x)\eta(S) + \frac{\varepsilon\alpha^3(\xi(x)) - 3\varepsilon\kappa\lambda^2(x)\alpha(\xi(x)) - 4\kappa^2\lambda^3(x)}{\alpha^4(\xi(x))}\alpha^2(\xi(x))\lambda(x)\eta(S).$$
(15)

By (4), (14), and (15), we have

 $a(\xi(x),S) = \alpha^2(\xi(x))\eta(S),$

which means that $(N, \alpha, \xi, \eta, \varphi)$ is an ACR-manifold. Hence, we get

$$\alpha(x,\xi(x)) = \eta\left(\xi(x)\right) = 1. \tag{16}$$

From (14) and (16), we conclude

$$F^{2}(\xi(x)) = (\kappa \lambda^{2}(x) + \varepsilon \lambda(x) + 1)^{2},$$

from which, we get (6).

Corollary 3.2. Letting $\varepsilon = 2$ and $\kappa = 1$ in (5), we reach to the class of square Finsler metrics. Thus, a square Finsler metric $F = \frac{(\alpha+\beta)^2}{\alpha}$ with an AC-structure (ξ, η, φ) on a manifold N is an ACF-manifold if and merely if $(N, \alpha, \xi, \eta, \varphi)$ is an ACR-manifold and $\beta = \lambda \eta$, where $(\lambda(x) + 1)^2 = F(\xi(x))$ for all $x \in N$.

If we put $\varepsilon = 1$ and $\kappa = 0$ in (5), then the generalized square metric F becomes a Randers metric. Consequently, we revisit Theorem 1.3 of [12] with a slight improvement.

Theorem 3.3. Suppose $F = \alpha + \beta$ is a Randers metric, and (ξ, η, φ) is an AC-structure on a manifold N. Then $(N, F, \xi, \eta, \varphi)$ is an ACF-manifold if and merely if $(N, \alpha, \xi, \eta, \varphi)$ is an ACR-manifold and $\beta = \lambda \eta$, where $\lambda(x) = F(x, \xi(x)) - 1$ for all $x \in N$.

Proof. In [12], it is proved that (F, ξ, η, φ) is an ACF-structure on N if and only if $(\alpha, \xi/\alpha(\xi), \alpha(\xi)\eta, \varphi)$ is an ACR-structure on N, and $\beta = \lambda \eta$, where $\lambda(x) = F(x, \xi(x)) - 1$ for all $x \in N$ (see Theorem 1.3 of [12]). By a direct calculation, we have

$$\lambda(x) = F(x, \xi(x)) - 1 = \alpha(\xi(x)) + \beta(\xi(x)) - 1 = \alpha(\xi(x)) + \lambda(x) - 1.$$

Hence, we have

$$\alpha(\xi(x)) = 1.$$

This completes the proof.

Indeed, Theorem 3.3 proposes a way to construct more examples of ACF-structures using the standard changings in the Finslerian world, such as Randers β -change.

Proposition 3.4. Let N be a manifold with an ACF-structure (F, ξ, η, φ) . Then, the Randers β -change $(N, \overline{F} = F + \beta, \xi, \eta, \varphi)$ is an ACF-manifold provided that $\beta = \lambda \eta$ for some scalar function on N.

Proof. We want to show that \overline{F} is an ACF-metric. For every tangent vector $y \in \ker(\eta_x)$, we have $\overline{F}(x,y) = F(x,y)$. Therefore, \overline{F} satisfies (3).

It suffices to prove that \overline{F} satisfies (4). By Theorem 2.2, for every $y \in \ker(\eta_x)$, we have

$$\mathbf{g}_y(\varphi y, y) = 0$$

The fundamental tensor $\bar{\mathbf{g}}_y$ is as follows [3]

$$\bar{\mathbf{g}}_{y}(S,T) = \frac{\bar{F}(y)}{F(y)}\mathbf{g}_{y}(S,T) + \left(1 - \frac{\bar{F}(y)}{F(y)}\right)\frac{\mathbf{g}_{y}(y,S)\mathbf{g}_{y}(y,T)}{F^{2}(y)} + \frac{\mathbf{g}_{y}(y,S)\beta(T)}{F(y)} + \frac{\mathbf{g}_{y}(y,T)\beta(S)}{F(y)} + \beta(S)\beta(T).$$
(17)

Putting $y = \xi(x)$ and $S = T = \xi(x)$ in (17) yield

$$\bar{F}^2(\xi(x)) = \left(F(\xi(x)) + \lambda(x)\right)^2$$

Also, by putting $y = \xi(x)$ and $T = \xi(x)$ in (17) and taking into account (4) for F, we have

$$g_{\xi(x)}(S,\xi(x)) = (F(\xi(x)) + \lambda(x))^2 \eta(S) = \bar{F}^2(\xi(x))\eta(S)$$

which means that \overline{F} is an ACF-metric.

4. K-contact ACF-manifolds

The class of K-contact manifolds is a wealthy class of Riemannian manifolds. It is natural o study K-contact Finsler manifolds. In this section, we first introduce K-contact ACF-manifolds and characterize generalized square K-contact ACF-manifolds.

Definition 4.1. Suppose $(N, F, \xi, \eta, \varphi)$ is an ACF-manifold such that the Reeb vector field ξ is a Killing vector field with respect to F, i.e., $\mathcal{L}_{\hat{\xi}}F = 0$, where $\hat{\xi}$ is the complete lift of ξ . In this case, we say $(N, F, \xi, \eta, \varphi)$ is a K-contact ACF-manifold.

In [7], X. Mo proves that the Lie derivative of an (α, β) metric $F = \alpha \rho(\beta/\alpha)$ is obtained as follows

$$\mathfrak{L}_{\hat{\xi}}F = (\varrho - s\varrho')\mathfrak{L}_{\hat{\xi}}(\alpha) + \varrho'\mathfrak{L}_{\hat{\xi}}(\beta).$$
(18)

Theorem 4.2. Let (N, F, ξ, η, ϕ) be a generalized square ACF-manifold. Then F is a K-contact ACF-metric if and merely if $(N, \alpha, \xi, \eta, \phi)$ is a K-contact Riemannian manifold and $\xi^i \lambda_i = 0$, where $\lambda_i = \frac{\partial \lambda}{\partial x^i}$ and $\xi = \xi^i \frac{\partial}{\partial x^i}$.

Proof. First, we assume $(N, \alpha, \xi, \eta, \varphi)$ is a K-contact Riemannian manifold and $\xi^i \lambda_i = 0$. Since $(N, \alpha, \xi, \eta, \varphi)$ is an ACR-manifold, then according to Theorem 3.1, (F, ξ, η, φ) is an ACF-structure on N. Moreover, it follows from (18) and $\xi^i \lambda_i = 0$ that F is a K-contact Finsler metric. Hence, $(N, F, \xi, \eta, \varphi)$ is a K-contact ACF-manifold.

Suppose $(N, F, \xi, \eta, \varphi)$ is a K-contact ACF-manifold. By definition, we have $\mathcal{L}_{\hat{\xi}}F = 0$. According to Theorem 3.1, $(N, \alpha, \xi, \eta, \varphi)$ is an ACR-manifold. We know that

$$\mathcal{L}_{\hat{\xi}}F = \mathcal{L}_{\hat{\xi}}\alpha + \varepsilon \mathcal{L}_{\hat{\xi}}\beta + \kappa \mathcal{L}_{\hat{\xi}}(\beta^2/\alpha)$$

Then we have

$$\mathcal{L}_{\hat{\xi}}\alpha + \varepsilon \mathcal{L}_{\hat{\xi}}\beta + \kappa \mathcal{L}_{\hat{\xi}}(\beta^2/\alpha) = 0.$$
⁽¹⁹⁾

Taking the rational and irrational parts of the equation (19), we get

$$\mathcal{L}_{\hat{\xi}}\alpha + \kappa \mathcal{L}_{\hat{\xi}}(\beta^2/\alpha) = 0,$$

and

$$\mathcal{L}_{\hat{\xi}}\beta = 0. \tag{20}$$

From (20), we conclude $\xi^i \lambda_i = 0$. A direct computation shows that

$$\mathcal{L}_{\hat{\xi}}\alpha + \kappa \mathcal{L}_{\hat{\xi}}(\beta^2/\alpha) = (1 - s^2)\mathcal{L}_{\hat{\xi}}\alpha + 2\kappa s \mathcal{L}_{\hat{\xi}}\beta),$$

which, with the help of (20), implies that $\mathcal{L}_{\hat{\xi}}\alpha = 0$. Therefore, $(N, \alpha, \xi, \eta, \varphi)$ is a K-contact ACR- manifold.

Since every square Finsler metric and Randers metric is a generalized square metric, we have the following two immediate results.

Corollary 4.3. A square ACF- manifold $(N, \frac{(\alpha+\beta)^2}{\alpha}, \xi, \eta, \varphi)$ is K-contact if and merly if $(N, \alpha, \xi, \eta, \varphi)$ is K-contact and $\xi^i \lambda_i = 0$.

Corollary 4.4. A Randers ACF- manifold $(N, \alpha + \beta, \xi, \eta, \varphi)$ is K-contact if and merely if $(N, \alpha, \xi, \eta, \varphi)$ is K-contact and $\xi^i \lambda_i = 0$.

Remark 4.5. It is worth mentioning that for a Randers ACF- manifold $(N, \alpha + \beta, \xi, \eta, \varphi)$, the condition $\xi^i \lambda_i = 0$ is equivalent to $(\mathfrak{L}_{\xi}F)(x,\xi(x)) = 0$ for all $x \in N$.

Example 4.1. Let h(x, y) be a differentiable function on \mathbb{R}^3 satisfying the following:

$$|h(x,y)| < \frac{1}{\sqrt{1+3y^2+y^4}}.$$

Let $N = \{(x, y, z) \in \mathbb{R}^3 \mid |h(x, y)| < \frac{1}{\sqrt{1+3y^2+y^4}}\}$. Let us consider the 1-form, vector field and Riemannian metric on N given by

$$\xi = \frac{\partial}{\partial z}, \qquad \eta = -ydx + dz, \qquad \alpha = \eta \otimes \eta + dx \otimes dx + dy \otimes dy,$$

respectively. If the (1,1)-tensor field φ on N is defined as

$$\varphi = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & y & 0 \end{bmatrix},$$

then $(N, \alpha, \xi, \eta, \varphi)$ is a K-contact Riemannian manifold. Suppose $(N, F = \alpha + \beta)$ is a Randers manifold, where $\beta = h(x, y)\eta$. One can easily see that $(N, \alpha, \xi, \eta, \varphi)$ is an ACR-manifold. Thus, according to Theorem 3.3, $(N, F, \xi, \eta, \varphi)$ is an ACF-manifold. We can see $\mathfrak{L}_{\xi}\alpha = 0$ and $\mathfrak{L}_{\xi}\beta = 0$, and consequently $\mathfrak{L}_{\xi}F = 0$. Hence ξ is a Killing vector field of F. Therefore, $(N, F, \xi, \eta, \varphi)$ is a K-contact ACF-manifold.

Inspired by Corollary 4.4, we close this section, by proposing a natural way to construct new examples of K-contact ACF-manifolds using the Randers β -changes. It suffices to observe that if $\overline{F} = F + \beta$, then $\mathcal{L}_{\hat{\xi}}\overline{F} = \mathcal{L}_{\hat{\xi}}F + \mathcal{L}_{\hat{\xi}}\beta$.

Proposition 4.6. Let $(N, F, \xi, \eta, \varphi)$ and the Randers β -change $(N, \overline{F} = F + \beta, \xi, \eta, \varphi)$ be an ACF-manifold. The Randers β -change $(N, \overline{F} = F + \beta, \xi, \eta, \varphi)$ is a K-contact ACF-manifold if and merely if $(N, F, \xi, \eta, \varphi)$ is a K-contact ACF-manifold and $\xi^i \lambda_i = 0$.

5. 3-Dimensional Left Invariant K-Contact Finsler Structures

Let (F, ξ, η, φ) be an ACF-structure on a 3-dimensional Lie group G. We say that (F, ξ, η, φ) is left-invariant, if for every $a \in G$, the left translation along $a, L_a: G \longrightarrow G$ is an ACF-isomorphism, i.e.,

$$L_{a_*} \circ \varphi = \varphi \circ L_{a_*}, \qquad L_a^*(F) = F, \qquad L_{a_*}\xi = \xi, \qquad L_a^*(\eta) = \eta.$$

From [2], the Lie group G is called unimodular if, for every $u \in \mathfrak{g}$, we have $tr(ad_u) = 0$, where \mathfrak{g} is the Lie algebra of G. In this case, it is well-known that the Lie algebra \mathfrak{g} admits an orthonormal basis $\{\xi, e, \varphi e\}$, such that

$$[\xi, e] = \sigma_3 \varphi e, \qquad [e, \varphi e] = \sigma_1 \xi, \qquad [\varphi e, \xi] = \sigma_2 e. \tag{21}$$

Next, consider a left-invariant ACF-structure of the form (21). In [2], the authors prove that η is not a contact form if and only if $\sigma_1 = 0$. We get the following classification result.

Theorem 5.1. Suppose $(F = \alpha + \varepsilon\beta + \kappa \frac{\beta^2}{\alpha}, \xi, \eta, \varphi)$ is a left-invariant generalized square ACF-structure on a unimodular Lie group G described by (21) with $\sigma_1 = 0$. If $d\eta(\cdot, \xi) = 0$, then G is one of the following

- (a) If I > 0, then G is E(2),
- (b) If I < 0, then G is E(1, 1),
- (c) If I = 0 and \mathfrak{g} is not abelian, then G is H,
- (d) If I = 0 and \mathfrak{g} is abelian, then G is \mathbb{R}^3 ,

where $I = \sigma_2 \sigma_3$, and $\tilde{E}(2)$, E(1,1), and H are the universal covering group of rigid motions of Euclidean 2-space, the group of rigid motions of Minkowski 2-space and the Heisenberg group, respectively.

Proof. By Theorem 3.1, we conclude that $(\alpha, \xi, \eta, \varphi)$ is a left-invariant ACR-structure on the 3-dimensional unimodular Lie group G. Now by Theorem 3.4 of [2], we get the proof.

Proposition 5.2. Any 3-dimensional unimodular Lie algebra \mathfrak{g} admits a left-invariant generalized square ACFstructure (F, ξ, η, φ) with $d\eta(\cdot, \xi) = 0$.

The Lie group G is non-unimodular if there exists a tangent vector $u \in \mathfrak{g}$ such that $tr(ad_u) \neq 0$. In this case, there exists an orthonormal basis $\{e_1, e_2, e_3\}$ of \mathfrak{g} , such that

$$[e_1, e_2] = \nu e_2 + \mu e_3, \qquad [e_1, e_3] = \delta e_2 + \gamma e_3, \qquad [e_2, e_3] = 0, \tag{22}$$

for some real constants ν , μ , γ , and δ satisfying conditions

$$\nu + \gamma \neq 0, \qquad \nu \delta + \mu \gamma = 0.$$
 (23)

It is easy to see that the quantity

$$Q = \frac{4(\nu\gamma - \mu\delta)}{(\nu + \gamma)^2}$$

is an invariant of \mathfrak{g} . Indeed, if we denote \mathfrak{g} by $\mathfrak{g}_{(\nu,\mu,\delta,\gamma)}$, then $\mathfrak{g}_{(\nu',\mu',\delta',\gamma')}$ and $\mathfrak{g}_{(\nu,\mu,\delta,\gamma)}$ are isomorphic Lie algebras if and only if Q = Q' (see [2] for more details).

Suppose $(F = \alpha + \varepsilon \beta + \kappa \frac{\beta^2}{\alpha}, \xi, \eta, \varphi)$ is a left-invariant generalized square ACF-structure on a non-unimodular Lie group G described by (22) with $d\eta(\cdot, \xi) = 0$. If $\xi = \cos \theta e_2 + \sin \theta e_3$, then an orthonormal basis (and so, a φ -basis) of ker η is given by $\{E_1 = e_1, E_2 = -\sin \theta e_2 + \cos \theta e_3\}$. From (23), we then easily obtain

$$\begin{split} [\xi, E_1] &= (\mu\cos^2\theta + (\gamma - \nu)\sin\theta\cos\theta - \delta\sin^2\theta)E_2 - (\nu\cos^2\theta + (\mu + \delta)\sin\theta\cos\theta + \gamma\sin^2\theta)\xi, \\ [\xi, E_2] &= 0, \\ [E_1, E_2] &= (\gamma\cos^2\theta - (\mu + \delta)\sin\theta\cos\theta + \nu\sin^2\theta)E_2 - (\delta\cos^2\theta + (\gamma - \nu)\sin\theta\cos\theta - \mu\sin^2\theta)\xi. \end{split}$$

We put

$$A := \gamma \cos^2 \theta - (\mu + \delta) \sin \theta \cos \theta + \nu \sin^2 \theta,$$

$$B := -(\delta \cos^2 \theta + (\gamma - \nu) \sin \theta \cos \theta - \mu \sin^2 \theta),$$

$$C := \mu \cos^2 \theta + (\gamma - \nu) \sin \theta \cos \theta - \delta \sin^2 \theta.$$

By Theorem 3.1 and Theorem 4.3 of [2], we get the following.

Theorem 5.3. Suppose $(F = \alpha + \varepsilon\beta + \kappa \frac{\beta^2}{\alpha}, \xi, \eta, \varphi)$ is a left-invariant generalized square ACF-structure on a 3dimensional non-unimodular Lie group G with the Lie algebra \mathfrak{g} described by (22), (23). Then, up to isomorphisms, the following are all and the ones left-invariant ACF-structures (F, ξ, η, φ) on \mathfrak{g} , satisfying $d\eta(\cdot, \xi) = 0$:

- (a) $[\xi, e] = \nu e + \mu \varphi e$, $[\xi, \varphi e] = \delta e + \gamma \varphi e$, $[e, \varphi e] = 0$, for any value of ν , μ , δ , and γ satisfying (23).
- (b) $[\xi, e] = C\varphi e$, $[\xi, \varphi e] = 0$, $[e, \varphi e] = A\varphi e + B\xi$, with $A \neq 0$ for any value of α , μ , γ , and δ satisfying (23).
- (c) $[\xi, e] = \nu \cos \theta e$, $[\xi, \varphi e] = 0$, $[e, \varphi e] = \nu \sin \theta e$, with $(\nu \cos \theta)^2 + (\nu \sin \theta)^2 \neq 0$ only when $\nu \neq 0$, $\mu = \gamma = \delta = 0$.

Corollary 5.4. Any 3-dimensional non-unimodular Lie algebra \mathfrak{g} admits a left-invariant generalized square ACFstructure (F, ξ, η, φ) with $d\eta(\cdot, \xi) = 0$.

References

- [1] D. E. BLAIR, *Riemannian geometry of contact and symplectic manifolds*, vol. 203 of Progress in Mathematics, Birkhäuser Boston, Ltd., Boston, MA, second ed., 2010.
- [2] G. CALVARUSO, Three-dimensional homogeneous almost contact metric structures, J. Geom. Phys., 69 (2013), pp. 60–73.
- [3] S.-S. CHERN AND Z. SHEN, *Riemann-Finsler geometry*, vol. 6 of Nankai Tracts in Mathematics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
- [4] H. GEIGES, A brief history of contact geometry and topology, Expo. Math., 19 (2001), pp. 25–53.
- [5] J.-B. JUN, I. B. KIM, AND U. K. KIM, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J., 34 (1994), pp. 293–301.
- [6] J. MILNOR, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), pp. 293–329.
- [7] X. Mo, On some Finsler metrics of constant (or scalar) flag curvature, Houston J. Math., 38 (2012), pp. 41–54.
- [8] D. PERRONE, Homogeneous contact Riemannian three-manifolds, Illinois J. Math., 42 (1998), pp. 243–256.
- [9] E. PEYGHAN, A. NADERIFARD, AND A. TAYEBI, Almost paracontact structures on tangent sphere bundle, Int. J. Geom. Methods Mod. Phys., 10 (2013), pp. 1320015, 11.
- [10] E. PEYGHAN AND A. TAYEBI, Almost paracontact structure in Finslerian indicatrix, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 19 (2011), pp. 151–162.
- [11] Z. SHEN, Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- [12] T. TABATABAEIFAR, B. NAJAFI, AND M. RAFIE-RAD, On almost contact Finsler structures, Int. J. Geom. Methods Mod. Phys., 17 (2020), pp. 2050126, 15.

Hannaneh Faraji, Behzad Najafi, Tayebeh Tabatabaeifar, K-contact generalized square Finsler manifolds, AUT J. Math. Comput., 5(4) (2024) 329-336 https://doi.org/10.22060/AJMC.2023.22528.1166

Please cite this article using: