[1] F. K. Afukaar and J. Damsere-Derry, Evaluation of speed humps on pedestrian injuries in ghana, Injury Prevention, 16 (2010), pp. A205–A206.
[2] R. Ahmadian, M. Ghatee, and J. Wahlstrom¨ , Discrete wavelet transform for generative adversarial network to identify drivers using gyroscope and accelerometer sensors, IEEE Sensors Journal, 22 (2022), pp. 6879– 6886.
[3] Y. I. Alatoom and T. I. Obaidat, Measurement of street pavement roughness in urban areas using smarphone, Int. J. Pavement Res. Technol., 15 (2022), pp. 1003–1020.
[4] R. G. Aldunate, O. A. Herrera, and J. P. Cordero, Early vehicle accident detection and notification based on smartphone technology, in Ubiquitous Computing and Ambient Intelligence. Context-Awareness and Context-Driven Interaction, Springer, Cham, 2013, pp. 358–365.
[5] A. Alessandrini, A. Cattivera, F. Filippi, and F. Ortenzi, Driving style influence on car co2 emissions, in 2012 international emission inventory conference, 2012.
[6] J. Almazan, L. M. Bergasa, J. J. Yebes, R. Barea, and R. Arroyo ´ , Full auto-calibration of a smartphone on board a vehicle using imu and gps embedded sensors, in 2013 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2013, pp. 1374–1380.
[7] F. Aloul, I. Zualkernan, R. Abu-Salma, H. Al-Ali, and M. Al-Merri, ibump: Smartphone application to detect car accidents, Computers and Electrical Engineering, 43 (2015), pp. 66–75.
[8] M. S. Amin, M. B. I. Reaz, M. A. S. Bhuiyan, and S. S. Nasir, Kalman filtered gps accelerometer-based accident detection and location system: A low-cost approach, Current Science, (2014), pp. 1548–1554.
[9] V. Astarita, M. V. Caruso, G. Danieli, D. C. Festa, V. P. Giofre, T. Iuele, and R. Vaiana ` , A mobile application for road surface quality control: Uniqualroad, Procedia Soc. Behav. Sci., 54 (2012), pp. 1135– 1144.
[10] E. Beuving, T. De Jonghe, D. Goos, T. Lindahl, and A. Stawiarski, Environmental impacts and fuel efficiency of road pavements, European Roads Review, (2004).
[11] D. M. Bhandari, A. Witayangkurn, R. Shibasaki, and M. M. Rahman, Estimation of origin[1]destination using mobile phone call data: A case study of greater dhaka, bangladesh, in 2018 Thirteenth International Conference on Knowledge, Information and Creativity Support Systems (KICSS), IEEE, 2018, pp. 1–7.
[12] R. Bhoraskar, N. Vankadhara, B. Raman, and P. Kulkarni, Wolverine: Traffic and road condition estimation using smartphone sensors, in 2012 Fourth International Conference on Communication Systems and Networks (COMSNETS 2012), IEEE, 2012, pp. 1–6.
[13] M. R. Carlos, L. C. Gonzalez, F. Mart ´ ´ınez, and R. Cornejo, Evaluating Reorientation Strategies for Accelerometer Data from Smartphones for ITS Applications, Springer International Publishing, 2016, pp. 407– 418.
[14] G. Castignani, R. Frank, and T. Engel, An evaluation study of driver profiling fuzzy algorithms using smartphones, in 2013 21st IEEE International Conference on Network Protocols (ICNP), 2013, pp. 1–6.
[15] P. Chaovalit, C. Saiprasert, and T. Pholprasit, A method for driving event detection using SAX with resource usage exploration on smartphone platform, J. Wireless Com. Network, 2014 (2014), p. 135.
[16] J. Dai, J. Teng, X. Bai, Z. Shen, and D. Xuan, Mobile phone based drunk driving detection, in 2010 4th International Conference on Pervasive Computing Technologies for Healthcare, 2010, pp. 1–8.
[17] S. H. de Frutos and M. Castro, Using smartphones as a very low-cost tool for road inventories, Transp. Res. C: Emerg. Technol., 38 (2014), pp. 136–145.
[18] H. Dong, M. Wu, X. Ding, L. Chu, L. Jia, Y. Qin, and X. Zhou, Traffic zone division based on big data from mobile phone base stations, Transp. Res. Part C Emerg., 58 (2015), pp. 278–291.
[19] H. R. Eftekhari, Smartphone-based system for driver anger scale estimation using neural network on continuous wavelet transformation, AUT J. Math. Comput., 1 (2020), pp. 113–124.
[20] H. R. Eftekhari and M. Ghatee, An inference engine for smartphones to preprocess data and detect stationary and transportation modes, Transp. Res. C: Emerg. Technol., 69 (2016), pp. 313–327.
[21] , Hybrid of discrete wavelet transform and adaptive neuro fuzzy inference system for overall driving behavior recognition, Transp. Res. F: Traffic Psychol. Behav, 58 (2018), pp. 782–796.
[22] H. R. Eftekhari and M. Ghatee, A similarity-based neuro-fuzzy modeling for driving behavior recognition applying fusion of smartphone sensors, J. Intell. Transp. Syst., 23 (2019), pp. 72–83.
[23] A. Efthymiou, E. N. Barmpounakis, D. Efthymiou, and E. I. Vlahogianni, Transportation mode detection from low-power smartphone sensors using tree-based ensembles, J. Big Data Anal. Transp., 1 (2019), pp. 57–69.
[24] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan, The pothole patrol: using a mobile sensor network for road surface monitoring, in Proceedings of the 6th International Confer[1]ence on Mobile Systems, Applications, and Services, New York, NY, USA, 2008, Association for Computing Machinery, p. 29–39.
[25] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan, The pothole patrol: using a mobile sensor network for road surface monitoring, in Proceedings of the 6th international conference on Mobile systems, applications, and services, 2008, pp. 29–39.
[26] M. Fazeen, B. Gozick, R. Dantu, M. Bhukhiya, and M. C. Gonzalez ´ , Safe driving using mobile phones, IEEE Trans. Intell. Transp. Syst., 13 (2012), pp. 1462–1468.
[27] M. Fekih, T. Bellemans, Z. Smoreda, P. Bonnel, A. Furno, and S. Galland, A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of lyon region (france), Transportation, 48 (2021), pp. 1671–1702.
[28] D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. P. Cardoso, Preprocessing techniques for context recognition from accelerometer data, Personal and Ubiquitous Computing, 14 (2010), pp. 645–662.
[29] S. Garg and P. Singh, A novel approach for vehicle specific road/traffic congestion, PhD thesis, Indraprastha Institute of Information Technology Delhi, 2014.
[30] S. Hemminki, P. Nurmi, and S. Tarkoma, Accelerometer-based transportation mode detection on smartphones, in Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, SenSys ’13, New York, NY, USA, 2013, Association for Computing Machinery.
[31] J. H. Hong, B. Margines, and A. K. Dey, A smartphone-based sensing platform to model aggressive driving behaviors, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2014, pp. 4047–4056.
[32] V. Jain, E. Gupta, M. S. Pillai, P. Bhola, and G. Chaudhary, Accist: Automatic traffic accident detection and notification with smartphones, in Computational Intelligence for Information Retrieval, CRC Press, 2021, pp. 35–46.
[33] V. Jain, E. Gupta, M. S. Pillai, P. Bhola, and G. Chaudhary, Accist: Automatic traffic accident detection and notification with smartphones, in Computational Intelligence for Information Retrieval, CRC Press, 2021, pp. 35–46.
[34] D. A. Johnson and M. M. Trivedi, Driving style recognition using a smartphone as a sensor platform, in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011, pp. 1609–1615.
[35] M. Kamalian and P. Ferreira, Fogtmdetector - fog based transport mode detection using smartphones, in 2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC), 2022, pp. 9–16.
[36] W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad, Mobile phone sensing systems: A survey, IEEE Communications Surveys & Tutorials, 15 (2012), pp. 402–427.
[37] R. Kujala, T. Aledavood, and J. Saramaki ¨ , Estimation and monitoring of city-to-city travel times using call detail records, EPJ Data Science, 5 (2016), pp. 1–16.
[38] G. L. KV, U. Sait, T. Kumar, R. Bhaumik, S. Shivakumar, and K. Bhalla, Design and development of a smartphone-based application to save lives during accidents and emergencies, Procedia Computer Science, 167 (2020), pp. 2267–2275.
[39] R. Mandal, P. Sonowal, M. Kumar, S. Saha, and S. Nandi, Roadspeedsense: Context-aware speed profiling from smart-phone sensors, EAI Endorsed Transactions on Energy Web, 7 (2020).
[40] V. Manzoni, D. Maniloff, K. Kloeckl, and C. Ratti, Transportation mode identification and real[1]time co2 emission estimation using smartphones, tech. rep., SENSEable City Lab, Massachusetts Institute of Technology, 2010.
[41] A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, and L. Selavo, Real time pothole detection using android smartphones with accelerometers, in 2011 International conference on distributed computing in sensor systems and workshops (DCOSS), 2011, pp. 1–6.
[42] P. Mohan, V. N. Padmanabhan, and R. Ramjee, Nericell: rich monitoring of road and traffic conditions using mobile smartphones, in Proceedings of the 6th ACM conference on Embedded network sensor systems, 2008, pp. 323–336.
[43] D. Montoya, S. Abiteboul, and P. Senellart, Hup-me: inferring and reconciling a timeline of user activity from rich smartphone data, in Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2015, p. 62.
[44] M. Nikolic and M. Bierlaire, Review of transportation mode detection approaches based on smartphone data, in 17th Swiss Transport Research Conference, 2017.
[45] Online Data, Global smartphone penetration rate as share of population from 2016 to 2023. https://www. statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/.
[46] Online Tutorial, Sparkfun Electronics: Accelerometer basics. https://learn.sparkfun.com/tutorials/ accelerometer-basics/all. Accessed: 2023-08-27.
[47] M. Perttunen, O. Mazhelis, F. Cong, M. Kauppila, T. Leppanen, J. Kantola, and J. Riekki ¨ , Distributed road surface condition monitoring using mobile phones, in International conference on ubiquitous intelligence and computing, Springer, Berlin, Heidelberg, 2011, pp. 64–78.
[48] S. Poslad, Ubiquitous computing: smart devices, environments and interactions, John Wiley & Sons, 2011.
[49] S. Rauscher, G. Messner, P. Baur, J. Augenstein, K. Digges, E. Perdeck, and O. Pieske, En[1]hanced automatic collision notification system-improved rescue care due to injury prediction-first field experi[1]ence, in The 21st International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV)- International Congress Center Stuttgart, Germany, 2009, pp. 09–49.
[50] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, Using mobile phones to determine transportation modes, ACM Transactions on Sensor Networks (TOSN), 6 (2010), pp. 1–27.
[51] R. M. K. Sandamal and H. R. Pasindu, Applicability of smartphone-based roughness data for rural road pavement condition evaluation, Int. J. Pavement Eng., 23 (2022), pp. 663–672.
[52] S. R. Shakya, C. Zhang, and Z. Zhou, Comparative study of machine learning and deep learning architecture for human activity recognition using accelerometer data, Int. J. Mach. Learn. Comput., 8 (2018), pp. 577–582.
[53] T. Sonderen, Detection of transportation mode solely using smartphones, tech. rep., University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science, 2016.
[54] V. M. Souza, Asphalt pavement classification using smartphone accelerometer and complexity invariant dis[1]tance, Eng. Appl. Artif. Intell., 74 (2018), pp. 198–211.
[55] M. Staniek, Road pavement condition diagnostics using smartphone-based data crowdsourcing in smart cities, J. Traffic Transp. Eng. (Engl. Ed.), 8 (2021), pp. 554–567.
[56] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu, Transportation mode detection using mobile phones and gis information, in Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems, 2011, pp. 54–63.
[57] B. Tian, Y. Yuan, H. Zhou, and Z. Yang, Pavement management utilizing mobile crowd sensing, Advances in Civil Engineering, 2020 (2020).
[58] W. Tu, F. Xiao, L. Li, and L. Fu, Estimating traffic flow states with smart phone sensor data, Transp. Res. C: Emerg. Technol., 126 (2021), p. 103062.
[59] R. Vaiana, T. Iuele, V. Astarita, M. V. Caruso, A. Tassitani, C. Zaffino, and V. P. Giofre`, Driving behavior and traffic safety: an acceleration-based safety evaluation procedure for smartphones, Modern Applied Science, 8 (2014), p. 88.
[60] A. Vittorio, V. Rosolino, I. Teresa, C. M. Vittoria, and P. G. Vincenzo, Automated sensing system for monitoring of road surface quality by mobile devices, Procedia Soc. Behav. Sci., 111 (2014), pp. 242–251.
[61] A. Vittorio, V. Rosolino, I. Teresa, C. M. Vittoria, P. G. Vincenzo, et al., Automated sensing system for monitoring of road surface quality by mobile devices, Procedia-Social and Behavioral Sciences, 111 (2014), pp. 242–251.
[62] J. White, C. Thompson, H. Turner, B. Dougherty, and D. C. Schmidt, Wreckwatch: Automatic traffic accident detection and notification with smartphones, Mobile Networks and Applications, 16 (2011), pp. 285–303.
[63] G. Xiao, Q. Cheng, and C. Zhang, Detecting travel modes from smartphone-based travel surveys with continuous hidden markov models, Int. J. Distrib. Sens. Netw., 15 (2019), p. 1550147719844156.