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ABSTRACT: The numerous capabilities of smartphones have made them suitable
alternative to expensive tools and methods in intelligent transportation systems.
This study surveys the literature on the role of the accelerometer of smartphones
in intelligent transportation applications. At first, the opportunities and challenges
of using the accelerometer are stated. Then, the architecture of using this sen-
sor including preprocessing, feature extraction, mode detection, reorientation and
applications are explained. Finally, different applications that have used the ac-
celerometer of mobile phones in the intelligent transportation systems have been
investigated.
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1. Introduction

As much as development of smartphones, various cell phone applications are implemented for different aims in ubiq-
uitous computation [48]. In [36] some smartphones applications in health, environment, social, human behaviors,
business and transportation have been discussed. The unique capability of these devices can be summarized in the
following attributes:

• The mobility

• The increasing expansion of their usage

• Containing several sensors (e.g. camera, microphone, GPS, gyroscope, accelerometer and magnetometer)
which can be used to study the behaviors and actions of their owner and the surrounding environment.

• Their access to different communication networks to send and receive information
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One of the major application domains of cell phones is intelligent transportation systems, such as OD matrix
estimation and traffic assignment by processing on stored records in GSM operators [11, 27], traffic monitoring
[18, 37] and accident detection [32]. Accelerometers are one of the smartphone sensors, which can be particularly
exploited for user behavior analysis and context-awareness in comparison with the other existing sensors. This tool
can be used to measure instantaneous acceleration in three coordination axes. Since the accelerometer measures
tilt and motion, it can detect rotation and motion gestures such as shaking or swinging. Most smartphones
have a relatively large screens (in comparison with the ordinary cell phones) and these screens are used to read or
browse internet pages, text files, or possibly various other software. The most common usage of the accelerometer in
smartphones and tablets is to activate auto screen rotation on these devices when the user changes their orientation.
On the other hand, embedding this sensor in the smartphones allows recording and detecting the smallest cell
phone gesture and consequently their users and thus they can be applied to explore performed actions through the
instantaneous acceleration analysis.

Research shows that since the late 2000s, when smartphones equipped with context aware sensors, including
accelerometers, were introduced to global markets, researches around the use of this sensor have increased. On the
other hand, the application of the accelerometer sensor in the field of intelligent transportation system has also
been considered. The review of research conducted in Elsevier and Google Scholar databases from 2008 to August
2023 shows the increasing growth of research with related keywords. Figure 1 shows trend chart of the volume of
articles published on each of the keywords “accelerometer in smartphone”, “accelerometer in transportation” and
“smartphone accelerometer in transportation” in these three databases.

(a) Trend chart in Elsevior (b) Trend chart in Google scholar

Figure 1: Trend of the volume of articles published

The ability of this sensor to recognize and analyze behaviors can be noted as a fundamental in-vehicle sensor
in the vehicle industry. As some instances, in air bag systems, stability control, and also noise, vibration, and
harshness (NVH) detection system, this sensor can be used efficiently. Furthermore, this sensor has been used in
personal navigation assistant (PNA) to analyze the behavior of the driver and in-vehicle monitoring. In addition to
the aforementioned attributes of smartphones, the abilities of this sensor are encouraged the researchers to study
the effects of smartphone accelerometers in transportation systems. In this study, first opportunities and challenges
of using the smartphone accelerometer with the purpose of transportation are investigated. The architecture model
and preparation steps in using this sensor in intelligent transportation system (ITS) is then discussed and finally,
the related research is categorized and compared. Thus, this paper provides a framework for the next researches in
the following branches:

• The quality of solutions made by the smartphone accelerometers.

• Process architecture models for practical utilization accelerometer

• Overall maturity scores of features, techniques, results of accelerometers in transportation systems

2. Methodology

The literature study methodology of using smartphone accelerometer sensor in intelligent transportation systems
is as follows:

At first, the research questions were determined. In this study, the aim was to answer the following questions:

• What are the features, opportunities and challenges of using smartphone accelerometer sensor in intelligent
transportation systems?
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Figure 2: 3-axis MEMS accelerometer sensor [46]

• According to the researches done, in which of the fields of intelligent transportation systems has this sensor
been used?

• In order to use this sensor in studies , what steps and preprocessing are applied on the raw data?

To achieve the objectives of the research, the review was made as comprehensive as possible to ensure that all
relevant studies was included.Therefore, with the main related keywords such as “smartphone accelerometer” and
“intelligent transportation systems”, the search was conducted during the last decade among the articles presented
in reliable scientific databases. Then, for each of the keywords of intelligent transportation systems applications
such as “traffic monitoring”, “driving behavior recognition”, “road pavement condition”, “mode detection” and the
like, along with the keyword of smartphone accelerometer, it was investigated. The review of survey articles in
each field is a priority, and the review of research articles with more citation and papers were published on journals
was the next priority. After collecting related studies and categorizing them based on the type of application, the
articles were reviewed to study extracted features from the accelerometer and preprocessing techniques on the raw
data. Result of this review was the types of preprocessing according to the type of application, which is the basis
of The architecture is proposed in this study.

3. Smartphone accelerometer

Accelerometer is a sensor for measuring acceleration and speed changes per unit of time and measuring vibra-
tion. This sensor has applications ranging from missile and airplane navigation systems to car airbags, intelligent
transportation and medical equipment, and industrial applications. Figure 2 shows a MEMS (Microelectrome-
chanical systems) accelerometer sensor. The sensing range of this sensor are different. Obviously, the accuracy
of the accelerometer sensor in an aircraft navigation system or the accelerometer of a car airbag is not needed in
smartphones. In a mobile phone, an accelerometer is built into the device for the purpose of screen changes and
monitoring changes in the position of the phone, which has an accuracy of about 2 to 4 g, depending on the mobile
phone models. The maximun frequency of recording acceleration by this sensor is also different around 100 to
200 Hz depending on the smartphone models. Figure 5 shows an example of acceleration recording on a Samsung
n8000 tablet with a recording frequency of 2 Hz by the Androsensor application. The existence of this sensor in the
smartphone provides opportunities in intelligent transportation systems, which requires knowing the characteristics
and challenges of this sensor to be able to use these opportunities.

3.1. Smartphone accelerometer opportunities

The cost/extent: In-vehicle sensors usually include sets of monitoring and navigating tools which are connected
to other vehicle control systems. These tools are very costly and are mostly used in the new and the top model
vehicles, since their installation in all vehicles is not economically justified. On the contrary, the penetration rate
of cell phones in most countries is near 100%, while the penetration rate of the smartphones is globally 78% in
2020 which is an increasing number [45].This statistical population is appropriate and adequate for most analysis
results of transportation. On the other hand, users do not practically purchase these devices for monitoring or
traffic analysis in-vehicle, and so this application is considered as an added value.
The low-energy: In contrast to GPS and Wi-Fi, which consume high energy and require satellite or connection
point communication, the accelerometer sensor consumes very low energy (about 1.65 mw).
The possibility of sending and processing data: Today, smartphones have a high processing power, memory,
and operating system which provide a framework to install programs and to process data. On the other hand, these
devices are accessible to difference communication and telecommunication networks to send the information and
results of processing to servers and databases at any time.
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3.2. Smartphone accelerometer challenges

Important challenges of using accelerometer sensor of the smartphones instead of accelerometers embedded in
vehicles or PNAs, are described in the following:
Dissimilarity between device and vehicle orientations: Cellphones may be placed differently inside the
vehicle or in the driver‘s bag. Therefore, analyzing the vehicle behaviors requires the reorientation of the phone
in three axes, Y (the movement direction axis of the vehicle), X (the lateral direction of the vehicle), Z (the axis
perpendicular to the vehicle). Inability reorientation causes vehicle‘s movement in one direction to create changes
in all three directions of the device‘s acceleration and inability to detect the type of its behavior. (See Fig. 3)

(a) Acceleration in well oriented smartphone (b) Acceleration in disoriented smartphone

Figure 3: Well oriented and disoriented accelerometer of smartphone in braking act [42].

Therefore, some studies have been considered to investigate the location and orientation of the cell phone, static
and in the same direction as the vehicle’s movement axis [26, 42]. Moreover, some studies have employed the size
of the resultant accelerations which equals the second norm of the acceleration of all 3 axes and it is independent
of the orientation of the device [19]. In this case, limited analysis can be provided and fewer applications have
been observed [21]. The main approach to reorientation using the following transformation matrix of the two
coordination axes with different orientations [6].

R(t) =

 CrCy + SrSpSy CpSy −SrCy + CrSpSy

−CrSy + SrSpCy CpCy SrSy + CrSpCy

SrCp −Sp CrCp


With following abbreviations

Sx : sinx

Cx : cosx

r : Rotation around Y -axis (Roll)

y : Rotation around Z-axis (Yaw)

p : Rotation around X-axis (Pitch)

Therefore, if the three angles between two coordination are specified, reorientation is possible using this matrix.
However, computing these angles requires more information for which different methods have been proposed by
researchers. One of the information required is the effect of gravity which is needed for reorientation in the z-axis.
Vittorio [61] has used this issue to analyze the pavement condition. Others have used GPS information to set and
modify the device‘s direction in relation to the vehicle [42]. Furthermore, some studies analyze the forward motion
of the vehicle to obtain the angular rotation matrix of the device in relation to the vehicle [12]. Almazan and
et al. [6] explain the reorientation and transformation equations and methods in detail. Comprehensive study is
represented by carlos [13].
Device movement inside the vehicle: Since cell phone is used to answer calls or send SMS, it is possible that
the device is used by the driver or the traveler during driving. Displacing the cell phone, falling from a height
(e.g. falling from the seat or the user‘s hand), or generally using it creates a many fluctuations in the accelerometer
sensor, none of which are related to the status of the vehicle. Therefore, the source of any change and whether it is
related to the behavior inside the vehicle must be detected and eliminated in the preprocessing stage. In order to
detect these gestures, other sensors like the proximity sensor can be utilized or the state of using the phone can be
checked. Moreover, the behavior of the accelerometer, when the device falls, is another feature which is recognizable
in comparison to other behaviors [20, 62].
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Inside or outside the vehicle: In contrast to in-vehicle sensors which are always inside the vehicle, cell phones
may be outside the vehicle as well. Therefore, the analysis is valid only when it is assured that the device is inside
the vehicle. Thus, one of the initial steps to apply this sensor is to determine the traveling mode (i.e. to distinguish
between motorized or non-motorized vehicles). Eftekhari [20] present a new approach to detect intervals which cell
phone is inside the vehicle.
Less sensitivity of the cell phone sensors: since embedded accelerometers and PNA devices are connected to
the body of the vehicle, their accuracy is high. However, cell phones are not directly in contact with the body of
the vehicle and mostly placed in a bag, pocket, or the seat. This prevents proper transference of car momentums to
the cell phone and the registered value by the cell phone sensor is relatively lower than the actual value, such that
even the location of the device is effective on the quality of the acceleration computed [24]. The sensitivity and the
minimum and the maximum measurement interval of the accelerometer sensor inside the cell phone equal 0.018g to
2g and the sampling ratio is usually 20Hz which is mostly adequate for ITS application. Although the acceleration
of accidents and sudden brakes are more intense to the vehicle than this value. (E.g., the air bag opens at 5g).
More limited application domain: analysis and detecting behavior using the accelerometers embedded inside
the vehicle are effective for making decisions by in-vehicle intelligent systems, e.g. opening air bags or activating
the brake systems. However, cell phones can merely perform passive monitoring. Therefore, it indirectly controls
the driver.
The accelerometer is not positioning!: we should not forget that accelerometers cannot perform positioning.
Therefore, since most transportation tasks required determining the location of the vehicle, in addition to analyzing
its behaviors, using accelerometers is mostly coupled with exploiting a location method like GSM, Wi-Fi, GPS, or
a combination of these methods

4. Process architecture

Smartphone use is justifiable in identifying behaviors and context awareness because of its advantages, its utilization
requires a process whose last step is to analyze the application. This section explains how to become applicable
and operable mobile accelerometer data in the transportation field. However, the process architecture is generally
usable for other sensors of mobile phones. Fig. 4 shows the process architecture. The steps of this architecture
include
Step 1: Preprocessing. Before processing the data, the removal of invalid entries, segmentation, and alignment
of sensors are needed. This step, which is also performed on other used sensors, includes:

Removing invalid entries : Values recorded by sensors may be invalid and outside the acceptable range due to
various reasons. This data may be the result of random noises or problems caused for the sensor. These noises
rarely occur and can be detected and removed by a simple preprocessing.

Segmentation : Data obtained from the sensor is segmented in specified time intervals (e.g., one-minute seg-
ments). This segmentation is done for detecting initial behavior and selecting the application sample. Segments
without conditions for the application analysis are removed in the second step, and the selected samples are kept.

Alignment: When other sensors are also used, data obtained from the accelerometer and other sensors must
be time alignment. This step is a prerequisite for sensor fusion. For example, if a collision is detected by the
accelerometer, the GPS data stored in that moment must be extracted.
Step 2: Determining the device status. What is essential in all ITS application is to identify segments where
the mobile phone is inside the vehicle. Although in other areas, such as healthcare, it is important to identify
the individual’s behavior, such as walking, running, climbing or going down the stairs [52], in the ITS domain the
sensor data are valid when the mobile phone is inside a motor vehicle whether it is a private vehicle, motorbike or
public transport vehicle. Hence, this step is very important. This step requires extracting features that do not need
accelerometer reorientation and high processing. Therefore, the term preliminary was selected for extracting its
features. This step aims to identify the mode of travel in a general classification of motor and non-motor. This can
be done by the second acceleration norm [20] or in combination with other tools, such as GPS and Wi-Fi [35, 44].
Step 3: Device reorientation. accurate study of the vehicle acceleration behavior in 3-Axes directions requires
the device reorientation in accordance with the vehicle directions. Reorientation is not needed in some applications,
in others it causes a significant increase in detection accuracy and in some application we have to reorient. As
mentioned in the section 3, reorientation is done using other sensors and supporting data.
Step 4: Feature extraction. In this step, various features of sensors are extracted based on the application. Some
features must also be extracted for determining the behaviors unrelated to the vehicle behavior. These irrelevant
behaviors include any use of mobile phones like talking, touching, moving, redirecting or even falling in the vehicle.
Particularly, the latter has a serious impact on the accelerometer. Thus, a part of feature extraction must identify
these behaviors. After removing their effect, the device reorientation is done, if needed. But the most important
part of this step is to extract features used in decision-making and behavior detection of application. Some of these
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Figure 4: Process architecture to become applicable accelerometer data in the transportation field

features are simply extracted from the accelerometer and some others from other sensors, such as average speed and
average acceleration which can also be achieved from GPS. Some features are independent from the accelerometer
and are merely extracted from other sensors, such as location or abnormal noises of the accident. Figo and et al. [28]
divide the accelerometer features into three general categories: features dependent on domain such as maximum
and minimum, variance, mean, and in some articles the stretching and skewness of energy waveform [30]. The
second category is time-dependent, mainly derived from Fourier transform of the acceleration energy function,
which filtering is also possible. For example, with a suitable low-pass filter, noises and impulses from the vehicle
engine can be removed or with a suitable high-pass filter, the effect of gravity on the accelerometer can be removed
[24, 34]. The third category of features is seeking to model the acceleration behavior in an alphabetical string format
and use algorithms such as SAX [15] or is seeking to evaluate the similarity of two sequences and use algorithms
such as DWT [54, 2].
Step 5: Identifying the application using classification. After extracting features, supervised or unsuper-
vised classification techniques are used. According to our research, the accelerometer has been used in five ITS
application. These five areas include determining the mode of travel, incident detection, determining the road pave-
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ment condition, driving behavior, and traffic and congestion detection. In each application, various classifiers are
used, such as Näıve Bayes, decision tree, support vector machines, K-means and other machine learning techniques.
Next, works done in each of the five application in the ITS field are explained.

5. Smartphones in ITS applications

5.1. Mode detection

It is common to employ cell phones to determine the mode. The reason for this is that in comparison to other
applications, this application is a long term behavior evaluation of the phone owner and an adequate and extended
amount of data are exist. On the other hand, there is a significant difference between the accelerometer‘s data in
different modes, e.g. walking, in comparison to driving. This difference makes mode determination possible despite
the aforementioned challenges. (See Fig. 5) .

Figure 5: Difference between the accelerometer‘s data in different modes

Hemminki and et al [30]. have only exploited the accelerometer to determine the mode and extract three feature
groups from the energy level of the accelerometer. The first group is related to frames which include means and
variance in the vertical and horizontal dimensions. The second group of the features is related to the energy level
peak which includes maximum height, density, average length of the peak, Kurtosis, and Skewness. The third
group is related to a segment that includes a limited set of frames which determine a mode. Eventually providing
78 dif-ferent features, seven modes (the bus, the vehicle, the subway, the train, the tram, walking, and still) were
detected with the accuracy of 84% .

Manzoni and et al. [40] has also distinguished between 8 different modes according to Fast Fourier Transforma-
tion (FFT) of the second norm of the acceleration. This method first utilized the piecewise function to break the
wave form into pieces and then applies filtering on high frequencies. Eventually, using decision trees and supervised
classification, classifies different modes. The resulting accuracy was in average higher than 82%.

Other studies have also used the combination of the accelerometers’ data and the GPS information. In [50],
different smartphone sensors such as Bluetooth, Wi-Fi, GPS, GSM and were investigated and the accelerometer
and GPS were evaluated as the most accurate option to analyze the traveling mode determination. The average
speed obtained from the GPS, as well as the variance and Discrete Fourier Transform (DFT) of second norm of the
accelerations was extracted as features. After that, different classifiers such as Decision Trees, K-Means, Nearest
Neighbor were applied to the data. Provided results showed accuracy higher than 93% to distinguish walking,
running, stopping, motorized vehicle, and biking modes. These results were obtained using a combination of Hidden
Markov Chains and decision trees. In addition to GPS, Stenneth and et al. [56] utilizes the geographic information
system (GIS) to increase the accuracy of traveling mode determination. Montoya et al. [43] have proposed a system
for detecting multimodal trips. In this system, the fusion of smartphone sensor data, including accelerometer, Wi-
Fi, GPS, and urban transportation network information, such as route maps and public transportation scheduling,
is used. In the first step, based on these data, a diagnosis has been made between the modes of walking, biking,
public transportation and road vehicle through a dynamic Bayesian network. Then, based on the schedule of public
transportation, the recognition between subway, bus, and tram has been done.

Using IMU sensors (magnometer, accelerometer, and gyroscope), Sonderen [53] has separated and accurately
identified modes of transportation, including walking, running, biking, and driving car. The use of the aforemen-
tioned sensors has led to the lowest battery consumption and processing compared to other methods that use GPS
or Wi-Fi. After using several learning machine algorithms such Random Forest, Decision Trees and k-Nearest
Neighbors, the mentioned research has come to the conclusion that the decision tree algorithm gives the best re-
sults. Eftymiou [23] has also presented a similar work using the same IMU sensors. Algorithms random forest and
gradient boosting have been used in this research.
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Xiao and et al. [63] identified five modes of transportation including walking, bus, car, bicycle and e-bike through
hidden Markov model and distinguished between them. The proposed method on GPS data alone has achieved more
than 93% accuracy both in training and in testing the learning algorithm. This accuracy has reached more than
95% if other information such as Wi-Fi data and accelerometer are used. The comparison of the previous studies
that used the mobile phone accelerometer to detect the mode in intelligent transportation systems is summarized
in Table 1

Table 1: Mode Detection studies based on accelerometer

Researches Sensors Detected Modes Results

[30] accelerometer bus, vehicle, subway, train, tram,
walking, and still

84%

[40] accelerometer Bus, Metro, Walk, Bicycle, Train,
Car, Still , Motorcycle

82%

[50] accelerometer, GPS walking, running, stopping, motorized
vehicle, biking

93%

[56] accelerometer, GPS, GIS Still, Walk, Run, Bike, Motor 93%

[43] accelerometer, Wi-Fi, GPS, urban
transportation network information

subway, bus, and tram, car, bike, walk 86%

[53] magnometer, accelerometer, and
gyroscope

walking, running, biking, driving car 97%

[23] magnometer, accelerometer, and
gyroscope

Different motorized transportation 86%

[63] accelerometer, Wi-Fi, GPS walking, bus, car, bicycle and e-bike 95%

5.2. Accident detection

Early accident detection and in-time notification play an important role in reducing driving fatalities, such that
eliminating the time difference between accident occurrences and the first notification or reducing the one-minute
duration of reaching the accident location leads to a 6% reduction in human fatalities [49]. Therefore, some
automobile manufacturers have embedded the ability to detect accidents and notifying emergency services in their
vehicles. The main elements of these systems are the accelerometers to detect the accident, GPS to locate, and
communication devices to contact emergency centers. That is why smartphones are a good candidate for this type
of issue.

However, the most important relevant challenge is a false accident detection. Since these systems aim to
accelerate the notification process, detections are performed without human interaction and verification. Therefore,
the ratio of false detections being reported by the system as an accident (false positives) is considerably important.
Each detection of the system is an initiative for a rescue operation, thus a false detection will be quite costly.

So, challenges like making sure that the cell phone is in fact inside the vehicle and detecting the difference
between accidents happening to the phone (e.g. falling from the seat) and the momentums of the vehicle are even
more highlighted. Using other sensors is one of the approaches to detect such difference. The microphone sensor
can also be exploited due to the loud and abnormal noises like opening the airbags, sudden brake, or colliding with
objects during accidents. It is clear that one of the challenges is detecting the difference between the surrounding
sounds like the music players, passenger‘s talking, and street congestion and the sound due to an accident. GPS
is not a suitable option to detect accidents due to its low accuracy and updating ratio. Although, White and et
al. [62] employs the speed registered by GPS as a trigger for activating the detection system. In that study, two
modes were considered for vehicle accidents.

In the first mode, when the vehicle is moving at a pace higher than a threshold, detecting a loud noise simul-
taneous with high acceleration is an indicator of an accident. Thresholds are also considered for the noise and
acceleration. The second mode is when the vehicle is stopped or moves at a low pace; however a sudden movement
and acceleration is occurred due to colliding with another vehicle. The movement higher than a threshold, coupled
with high acceleration and a loud noise is considered as an accident.

In all conducted studies, the threshold for acceleration plays an essential role. Taking into account the low
threshold increases the false positive ratio, and in turn increasing the threshold makes detecting less intense accidents
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impossible. Moreover, Aldunate [4] detects accidents by assigning weights to the two values from the microphone
and the accelerometer.

Amin [8] employs the accelerometer and GPS information fusion to detect the accident, when the velocity of
the vehicles is higher than 23km/s and the decelerate is more than 5g. For lower velocities, accidents hardly cause
injuries. Aloul [7] uses dynamic time warping (DTW) and hidden Markov models (HMMs) on data collected from
a mobile phone placed in an accident car to determine the severity of the accident and provide timely notification.
The method used has caused false positive alarms to be reduced to a minimum.

KV [38] developed an application that detects the occurrence of an accident using accelerometer data from
a mobile phone located in a car. After confirming the accident, the emergency services are notified through the
application. The comparison of the some differnet approaches that used the mobile phone accelerometer to detect
the accident in intelligent transportation systems is summarized in Table 2

Table 2: Accident detection studies based on accelerometer

Researches Sensors Techniques

[4] Accelerometer, microphone Determining thresholds for each sensor

[8] Accelerometer, GPS Activating alarm when deceleration is more than 5g
and speed more than 32 km/s

[7] Accelerometer Using DTW and HMMs

[38] Accelerometer Abnormal deceleration active application untill user
response or execution emergency protocol

5.3. Driver behavior

The behavior of the driver plays an important role in accidents, traffic, and fuel consumption. Research shows
that alerting the driver about the inappropriate state of driving, e.g. aggressive behavior, sleepiness, etc., reduce
almost 20% of the accidents [15]. Moreover, aggressive driving causes 40% more fuel consumption and mitigating
the mental convenience of the passengers [5]. Therefore, the managers of insurance companies and transportation
fleet seek driver profile and behavior analysis. The research conducted based on the velocity, acceleration, and
deceleration analysis have inferred the general behavior of the driver, including being aggressive, sleepiness, using
drugs, or alcohol.

Some of these studies like [5], first detect gestures and maneuvers of the driver which includes rotating to left
or right, turning, intense line changing, deviating from the path, etc. after that, the general behavior of the driver
is obtained by investigating the type of these maneuvers.

Castignani [14] uses fuzzy logic to investigate and grade the driver profile in case of nervousness and recommends
employing this grade as a measure to consider discounts or increase the annual insurance payments and rewarding
and punishments of the drivers of a fleet. This research exploits four features of the instantaneous acceleration,
velocity and linear acceleration obtained from GPS and the steering rate. For each feature, two thresholds (average
and aggressive) are considered. The number of times these values exceed the threshold, they are fuzzified in three
levels of low, medium, and high, and then using fuzzy rules, the status of the driver is determined based on one
Calm, Average, Moderate, Aggressive levels.

In some studies like [59], a simpler method to detect the nervousness of the driver has been employed. This
method generally analyzes the acceleration information of the GPS. The acceleration threshold for the normal
driving is calculated in the x and y axes. The acceleration values obtained from the driver is then compared with
the threshold boundaries. If the distribution of the point outside the threshold boundaries is higher than the points
inside this boundary, the aggressive behavior of the driver is reported. Moreover, Dai [16] defines an acceleration
threshold boundary in the direction of x and y axes to detect the abnormal behavior of the driver under the influence
of alcohol. The perquisite of this method includes reorientation of the phone with the direction of the vehicle which
is discussed in the aforementioned research.

Inferring the behavior of the driver based on the vehicle‘s maneuvers is more complicated in comparison to the
aforementioned methods, since the driver‘s gestures must be first detected and identified and the general behavior of
the driver is then evaluated. With taking into account the threshold of the peak of y axis acceleration (the direction
of the vehicle); Fazeen [26] detects the sudden acceleration change. Moreover, in order to detect sudden change
of line, the threshold of the x axis acceleration peak (the lateral axis of the vehicle) has been employed. Another
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extracted feature to determine the sudden change of line is the duration of the acceleration change. Changing the
line safely is usually 75% longer than suddenly changing the line.

Chaovali and et al. [15] use SAX algorithm to transform the energy level obtained from the accelerometer to
an alphabetic string. A string pattern is then extracted regarding the aggressive behaviors of the driver, including
sudden brakes, sudden acceleration, and suddenly turning to left or right. Eventually, these patterns are sought in
the driving behavior string of the driver. The section in which there is a high similarity to one of these patterns is
detected as an aggressive maneuver.

In addition to utilizing GPS, coupled with the accelerometer, other sensors like the gyroscope have also been
employed. This sensor can only show the angular velocity of the device rotation and detect maneuvers and rota-
tions more sustainably than the accelerometer. Johnson [15] has shown that using this sensor, in addition to the
accelerometer, leads to good results for detecting different forms of maneuvers. The beginning and the end of a
maneuver is obtained by the mean square values of the x-axis gyroscope. In case in an interval, this value is higher
than a maximum threshold, it is an indicator of a maneuver. The end of the maneuver is also detected by the
reduction of this value lower than the minimum threshold. If only one of the accelerometer or the gyroscope is used
to detect the maneuver, the accuracy is about 77 to 79%. However a combination of the two improves the accuracy
to 91%. Similar studies can be found in [31].

Eftekhari and Ghatee [22] have analyzed the behavior of drivers using neural fuzzy network. In this research,
the fusion of IMU sensors has been used to detect the type of maneuver and the driver behavior in each manuevers.
Also, for validation, comparing the results with the driver’s anger scale (DAS) questionnaire has been used. In
this research, accelerometer data is used without reorientation. Also, in another research [19], by extracting the
feature based on the continuous wavelet transformation of the mobile phone accelerometer and using a MLP neural
network, the driver’s behavior has been divided into three categories: safe, semi-aggressive, and aggressive. Again,
the results were compared with the DAS questionnaire, and in 79% of the cases, the proposed model recognized in
accordance with the questionnaire results. Using the discrete wavelet transform and ANFIS in a similar study by
them, the accuracy of 92% was reported [21].

The comparison of the previous studies that used the mobile phone accelerometer to driver behavior in intelligent
transportation systems is summarized in Table 3

Table 3: Driver behavior recognition studies based on accelerometer

Researches Sensors Techniques

[5] Accelerometer Determining manuevers type, then analysing
behavior of driver in each manuevers

[14] GPS, (Accelerometer) Creating drive profile based on fuzzy inference

[26] Accelerometer Detecting the sudden acceleration based on
peak of acceleration curve

[15] Accelerometer Using SAX algorithm and alphabetic pattern
to detect aggressive driving

[34] Accelerometer,gyroscope Detecting the beginning and the end of a ma-
neuver by gyroscope and detecting aggresive
driving by accelerometer

[22] Accelerometer,gyroscope Detecting maneuvers by gyroscope, fuzzifica-
tion acceleration in each manuevers and calcu-
lating similarity to safe and aggressive driving

[19] Accelerometer Detecting class of behavior based on CWT of
Acceleration and speed by MLP

[21] Accelerometer,gyroscope, magenometer Using DWT and ANFIS, output of six ANFIS
fusion to decision of overall driver behavior

5.4. Determining pavement condition

Detecting the condition of roads and streets is one of the requirements of city or sub-urban pavement management.
Research shows that abnormal or uneven points like potholes and road bumps along the road can lead to a 2 to 6%
increase in fuel consumption [10] and increasing accidents and fatalities [1].
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In comparison with traditional methods of collecting data by deploying scanners with special equipment, this
domain can also benefit from the idea of utilizing smartphone sensors to collect pavement information and detecting
abnormal points. The general approach to exploiting smartphones is detecting abnormal points using the changes in
acceleration, particularly along the Z axis (the perpendicular axis of the vehicle). Abnormal point location is then
performed by GPS and the candidate points are sent to the analysis center using cell phone communication networks.
Eventually, the analysis center makes a decision based on the frequency of the announced points. Abnormality can
be a result of speed bumps, at the cross section of urban train rails, or small or big holes. Detecting the difference
between different abnormalities is the challenge of this mechanism.

Another challenge of this mechanism is that any abnormality announced by one vehicle crossing a street may
not be detected by other vehicles, since the second vehicle does not necessarily cross the same section of the street
as the first one. On the other hand, the announced abnormality may be a false positive due to reasons other than
the pavement. Another issue is related to the speed of the vehicles. The behavior of the accelerometer in detecting
the axes accelerations (especially the Z axis) is directly related to the speed of the car. In other words, when the
speed of the vehicle is high, an abnormality at the surface of the road creates a stronger momentum along the Z
axis and it is more likely to detect it. While when the speed is low, the momentum is also less intense and its
distinction with the normal momentums of the vehicle will be more difficult. Therefore, some studies define two or
more threshold for different velocities.

A well-known relevant research was conducted by Eriksson [25]. The advantage of this research is the possibility
of detecting the abnormal points based on their type, including potholes, manhole caps, railroad crossing, and
bumps. This is performed through machine learning. After manual sampling, the acceleration behavior is trained
for each type of abnormality and the acceleration behavior for a smooth road. The data collected from the vehicles
is then filtered in a five-stage process. The threshold boundaries of the filters are determined according the initial
training sample and the best one is selected. One these thresholds are the peak of the z axis. If the acceleration
exceeds this threshold, it can be considered as an abnormality. In other articles, this feature is referred to as the
z-peak. According to the five-stage filtering, 7 taxies navigated 5 streets. The points close to each other were
interpreted as one point using clustering. Results indicated that in all but in one of the streets, the false positive
ratio was very low and insignificant (less than 0.5Another research distinguishing between different abnormality
types was performed by Fazeen [26], in which detects the road condition, potholes, and speed bumps based on
merging and analysis of the acceleration along x and z axes. This study introduces the velocity of 20 m/h as an
appropriate speed to detect the abnormalities with high accuracy. The height of the speed bump is also estimated
in this research. Although there is not much detail regarding the methodology and we are referred to (Eriksson),
results are acceptable and in all case, accuracy was reported higher than 70

In [42], another feature is provided to detect abnormalities at velocities lower than 40 km/h. this feature,
which is called z-sus, takes into account the continuing low energy levels of the z axis acceleration (sustained dip
lasting for 20 milliseconds). Since abnormality at low paces involves a longer duration along the z axis, it can be a
more suitable alternative to z-peak at low paces. However, for velocities higher than 40 km/h, z-peak is employed.
Moreover, it is also confirmed by the results and the false positive/negative ratios. Mednis [41] introduces sudden
changes of the z axis acceleration as a feature called z-diff. If during a short interval, this change is higher than a
threshold, an abnormality is identified.

In addition to reorient the device differently, Bhoraskar and et al. [12] which follow the notion of [42], exploit
machine learning techniques including k-mean and SVM, instead of defining a threshold to detect the abnormal
points. Using 2-mean, the z axis acceleration is classified into two distinct classes by training bumpy and smooth
roads and provides an unsupervised learning to detect to abnormal behavior. Results are then trained to a SVM.
In [47], abnormal behaviors along the z axis are divided into two classes. The first class includes small bumps,
small road unevenness, and railroad crossings. The second class consists of speed bumps and big potholes which
makes the driver to brake. For feature extraction, mean, standard deviation, the distance peak to peak distance,
and the FFT frequency domains are employed. This research also investigates the effect of speed on detecting
abnormalities and shows a linear relationship between the vehicle speed and the extracted features. Furthermore,
SVM has been used as a classifier. However, as the article states, results are not fully satisfactory. There are several
studies evaluating the abnormalities without reorientation. For instance, Jain [33] aims to find intense abnormalities
which significantly reduce the driver‘s speed and are not detectable due to foggy weather or the unclear state of
the road. The proposed idea detects these points through the crossing drivers and inform the drivers adjacent to
these points. Since the second norm of the acceleration is used, reorientation or related challenged are eliminated.
Results indicate that 80% of the abnormalities are detected and the driver is falsely informed for 20% of the cases.

Astarita and et al. [9] detect and distinguish rubber and stone speed bumps with a particular form using
reorientation along the z axis. This reorientation is possible based on the gravity. Therefore, no complicated
computations or additional lateral information is necessary. A similar work can be found in [60]. In addition to
detecting road abnormalities, the smartphone accelerometer is used to collect the road gradient and its turn to
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provide geographical information of the roads [17]. Tian [57] shows that IMU sensors embedded in smartphones
have been the most popular data source. They introduce the procedure of recognition pavement anomalies based
on inertial data in three phase, including preparatory phase, data collection phase, and data processing phase.
Sandamel [51] proposes the application of smartphone-based roughness data to evaluate the condition of rural
road pavements and compares it with results obtained from roughness measurement equipment. The results show
that it has a good correlation, which shows that it has sufficient accuracy compared to conventional roughness
measurement methods.

Based on the International Roughness Index, Alatoom [3] has provided a low-cost method to evaluate the
roughness of urban street pavements by using smartphone accelerometer signal processing and using different
filters. In this research, the effect of vehicle speed, sampling rate, mobile phone position has been investigated in
order to achieve higher accuracy.

In [55] the location and accelerometer data of smartphones are sent directly to the center without any processing.
In the central servers, the data collected from all smartphones is aggregated based on time and place. Then it
estimates the condition of the pavement of each 10-meter section of the road. The results were compared with a
set of reference data of the road infrastructure administration, and a binary classifier was trained based on target
data, and the results obtained from these results had high accuracy. The comparison of the previous researches
that used the mobile phone accelerometer to detect pavement condition is summarized in Table 4

Table 4: Pavement abnormality detection studies based on accelerometer

Researches Type of abnormality Accuracy

[25] Potholes, manhole caps, railroad crossing,
and bumps

False positive less than 0.5

[26] Potholes, and speed bumps higher than 70%

[42] Potholes, and speed bumps In the best case study FN=23%, FP=5%

[41] Large and small potholes, pothole clusters,
gaps and drain pits

92%

[47] Small bumps, small road unevenness, and
railroad crossings

Not reported

[33] Abnormalities which significantly reduce the
driver‘s speed

80%

[9] Distinguish rubber and stone speed bumps 93%

[55] Assigning four class for road pavement 90%

5.5. Detecting traffic conditions and congestions

Another domains employing the accelerometer is traffic monitoring. Since traffic monitoring is highly dependent to
location and the velocity of the vehicle, such research has mostly utilized GPS. On the other hand, the acceleration
obtained from the speeds difference of GPS is adequate for analyzing the status of the traffic. Therefore, these
studies less frequently use accelerometers and mostly exploit it as a complementary to detection. Due to high
energy consumption of GPS, Mohan and et al. [42] uses this sensor only at certain times. Thus, most of its analysis
is based on the accelerometer. This study first reorients the device and then finds the difference between the stop-
and-go traffic and walking. Since the acceleration fluctuations in the consecutive stop-and-go are similar to walking,
their difference is detected by defining a threshold and investigating the difference between their acceleration peaks.
Location is also performed based on GSM and if necessary, GPS is used to enhance accuracy.

Another related research is [29] which utilizes the existing sensors in smartphones like GPS, accelerometer,
gyroscope, and digital compass to analyze the velocity and acceleration. This article features traffic monitoring
in different modes including cars, bikes, tricycles, and public transportation. This study has showed that for
each mode, the velocity and acceleration in crowded and non-crowded traffic is different. Moreover, features were
extracted to detect traffic lights, as well as the accidents. This research utilizes different methods including SVM,
decision trees, and Markov hidden chain to classify the traffic behavior and the compares their results. Decision
trees obtained the best results with an accuracy of 85%. Of course, the difference between the walking behavior
and the stop-and-go traffic behavior was not investigated.
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Wenwen Tu and et.al. [58] using nonlinear classification such as deep neural network proposes a framework to
classify traffic flow states based on accelerometer, gyroscope and GPS speed data of smartphone. he study found
that acceleration and angular acceleration data can increase the accuracy of traffic flow classification significantly.
24 feature are extracted from three dimensions of accelerometer and gyroscope, such as mean, variance and other
statistical expression and are used in this study. Mandal [39] has detected the traffic flow using smartphone
accelerometer data of two-wheelers with an accuracy of more than 83%. This recognition is based on characteristics
such as the location of speed bumps detected by the accelerometer or the density of Wi-Fi hotspot on the route.

6. Discussion

The literature review on studies reports that mobile phone sensors, especially the accelerometer, have good capacities
to be used in intelligent transportation systems, although the reliability of this sensor and the accuracy of the
applications that use this sensor, it is not very high. Therefore, this sensor can be a candidate for use in decision
support systems, and the possibility of using this sensor in decision-making systems is doubtful; especially in
applications such as accident detection.

The results show that great research has been done in mode detection by accelerometer alone or by fusion with
other smartphone sensors, and the performance of this sensor has been acceptable. Also, the results obtained in the
analysis of driving behavior show that this sensor reflects well the aggressive or abnormal behavior of the driver.
One of the reasons that has caused the smartphone accelerometer to perform well in the analysis of the driving
style is the continuous monitoring of the driver’s behavior in different positions and maneuvers in time and during
the trip (or different trips) which includes dozens of maneuvers.

An application such as the detection of abnormality in road pavement, if reported by a large number of mobile
phones, can be reliable and can be used for deciding on repairing pavement. In other words, the detection false
positive or negative report of a mobile phone can be reduced to a minimum through the aggregation on reports
and decision fusion on results.

Regarding the application of detecting the traffic condition, the fusion of other sensors has a decisive role, and
actually the detection of the traffic condition is highly dependent on speed and position which cannot be extracted
by the accelerometer. Therefore, the role of the accelerometer is as a guide for activating the positioning systems
or helping to better detection traffic congestion.

7. Conclusion

Since smartphones can access various communication and telecommunication networks and they are equipped with
different sensors like the accelerometer, gyroscope, microphone, and positioning, e.g. GPS and GSM, they have
become a suitable candidate for different behavior recognition, including traffic and transportation. Nevertheless,
these sensors and capabilities of smartphones are not designed and customized for such purposes and thus their
operation in ITS poses many challenges. This study discussed the research conducted regarding the using of the
accelerometer sensor of smartphones in transportation systems. This sensor, which aims to detect the direction
changes of the cell phone‘s screen, is able to accurately record different gestures and momentums of the device.
This feature allows it to be utilized in various application of the transportation domain, including mode detection,
accident detection, traffic monitoring and the behavior of the driver, and the road pavement condition detection.
However, using this sensor poses challenges like requiring device reorientation, the sensitivity of the sensor, and de-
tecting the source of the gesture. On the other hand, the cost of the built-in equipment for intelligent transportation
installed in vehicles has caused the use of the capabilities of mobile phones, to be considered in intelligent trans-
portation systems. In this study, an architectural model of preparation of smartphone accelerometer is provided to
utilize it in the ITS applications and the techniques employed are discussed. Finally, a survey of researches related
to each application, as well as methods, features, and complementary sensors are investigated and compared.
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[37] R. Kujala, T. Aledavood, and J. Saramäki, Estimation and monitoring of city-to-city travel times using
call detail records, EPJ Data Science, 5 (2016), pp. 1–16.

[38] G. L. KV, U. Sait, T. Kumar, R. Bhaumik, S. Shivakumar, and K. Bhalla, Design and development
of a smartphone-based application to save lives during accidents and emergencies, Procedia Computer Science,
167 (2020), pp. 2267–2275.

[39] R. Mandal, P. Sonowal, M. Kumar, S. Saha, and S. Nandi, Roadspeedsense: Context-aware speed
profiling from smart-phone sensors, EAI Endorsed Transactions on Energy Web, 7 (2020).

[40] V. Manzoni, D. Maniloff, K. Kloeckl, and C. Ratti, Transportation mode identification and real-
time co2 emission estimation using smartphones, tech. rep., SENSEable City Lab, Massachusetts Institute of
Technology, 2010.

399



H. R. Eftekhari, AUT J. Math. Comput., 5(4) (2024) 385-401, DOI:10.22060/AJMC.2023.22592.1179

[41] A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, and L. Selavo, Real time pothole detection using
android smartphones with accelerometers, in 2011 International conference on distributed computing in sensor
systems and workshops (DCOSS), 2011, pp. 1–6.

[42] P. Mohan, V. N. Padmanabhan, and R. Ramjee, Nericell: rich monitoring of road and traffic conditions
using mobile smartphones, in Proceedings of the 6th ACM conference on Embedded network sensor systems,
2008, pp. 323–336.

[43] D. Montoya, S. Abiteboul, and P. Senellart, Hup-me: inferring and reconciling a timeline of user
activity from rich smartphone data, in Proceedings of the 23rd SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2015, p. 62.

[44] M. Nikolic and M. Bierlaire, Review of transportation mode detection approaches based on smartphone
data, in 17th Swiss Transport Research Conference, 2017.

[45] Online Data, Global smartphone penetration rate as share of population from 2016 to 2023. https://www.

statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/.

[46] Online Tutorial, Sparkfun Electronics: Accelerometer basics. https://learn.sparkfun.com/tutorials/
accelerometer-basics/all. Accessed: 2023-08-27.

[47] M. Perttunen, O. Mazhelis, F. Cong, M. Kauppila, T. Leppänen, J. Kantola, and J. Riekki,
Distributed road surface condition monitoring using mobile phones, in International conference on ubiquitous
intelligence and computing, Springer, Berlin, Heidelberg, 2011, pp. 64–78.

[48] S. Poslad, Ubiquitous computing: smart devices, environments and interactions, John Wiley & Sons, 2011.

[49] S. Rauscher, G. Messner, P. Baur, J. Augenstein, K. Digges, E. Perdeck, and O. Pieske, En-
hanced automatic collision notification system-improved rescue care due to injury prediction-first field experi-
ence, in The 21st International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV)-
International Congress Center Stuttgart, Germany, 2009, pp. 09–49.

[50] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, Using mobile phones to
determine transportation modes, ACM Transactions on Sensor Networks (TOSN), 6 (2010), pp. 1–27.

[51] R. M. K. Sandamal and H. R. Pasindu, Applicability of smartphone-based roughness data for rural road
pavement condition evaluation, Int. J. Pavement Eng., 23 (2022), pp. 663–672.

[52] S. R. Shakya, C. Zhang, and Z. Zhou, Comparative study of machine learning and deep learning ar-
chitecture for human activity recognition using accelerometer data, Int. J. Mach. Learn. Comput., 8 (2018),
pp. 577–582.

[53] T. Sonderen, Detection of transportation mode solely using smartphones, tech. rep., University of Twente,
Faculty of Electrical Engineering, Mathematics and Computer Science, 2016.

[54] V. M. Souza, Asphalt pavement classification using smartphone accelerometer and complexity invariant dis-
tance, Eng. Appl. Artif. Intell., 74 (2018), pp. 198–211.

[55] M. Staniek, Road pavement condition diagnostics using smartphone-based data crowdsourcing in smart cities,
J. Traffic Transp. Eng. (Engl. Ed.), 8 (2021), pp. 554–567.

[56] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu, Transportation mode detection using mobile phones
and gis information, in Proceedings of the 19th ACM SIGSPATIAL international conference on advances in
geographic information systems, 2011, pp. 54–63.

[57] B. Tian, Y. Yuan, H. Zhou, and Z. Yang, Pavement management utilizing mobile crowd sensing, Advances
in Civil Engineering, 2020 (2020).

[58] W. Tu, F. Xiao, L. Li, and L. Fu, Estimating traffic flow states with smart phone sensor data, Transp.
Res. C: Emerg. Technol., 126 (2021), p. 103062.

[59] R. Vaiana, T. Iuele, V. Astarita, M. V. Caruso, A. Tassitani, C. Zaffino, and V. P. Giofrè,
Driving behavior and traffic safety: an acceleration-based safety evaluation procedure for smartphones, Modern
Applied Science, 8 (2014), p. 88.

400

https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/
https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/
https://learn.sparkfun.com/tutorials/accelerometer-basics/all
https://learn.sparkfun.com/tutorials/accelerometer-basics/all


H. R. Eftekhari, AUT J. Math. Comput., 5(4) (2024) 385-401, DOI:10.22060/AJMC.2023.22592.1179

[60] A. Vittorio, V. Rosolino, I. Teresa, C. M. Vittoria, and P. G. Vincenzo, Automated sensing system
for monitoring of road surface quality by mobile devices, Procedia Soc. Behav. Sci., 111 (2014), pp. 242–251.

[61] A. Vittorio, V. Rosolino, I. Teresa, C. M. Vittoria, P. G. Vincenzo, et al., Automated sensing
system for monitoring of road surface quality by mobile devices, Procedia-Social and Behavioral Sciences, 111
(2014), pp. 242–251.

[62] J. White, C. Thompson, H. Turner, B. Dougherty, and D. C. Schmidt, Wreckwatch: Automatic
traffic accident detection and notification with smartphones, Mobile Networks and Applications, 16 (2011),
pp. 285–303.

[63] G. Xiao, Q. Cheng, and C. Zhang, Detecting travel modes from smartphone-based travel surveys with
continuous hidden markov models, Int. J. Distrib. Sens. Netw., 15 (2019), p. 1550147719844156.

Please cite this article using:

Hamid Reza Eftekhari, A survey on usage of smartphone accelerometer sensor in intelligent
transportation systems, AUT J. Math. Comput., 5(4) (2024) 385-401
https://doi.org/10.22060/AJMC.2023.22592.1179

401

http://dx.doi.org/10.22060/AJMC.2023.22592.1179
https://ajmc.aut.ac.ir/article_5238.html

	Introduction
	Methodology 
	Smartphone accelerometer 
	Smartphone accelerometer opportunities 
	Smartphone accelerometer challenges 

	Process architecture 
	Smartphones in ITS applications 
	Mode detection 
	Accident detection
	Driver behavior
	Determining pavement condition
	Detecting traffic conditions and congestions

	Discussion
	Conclusion

