[1] F. Aliniaeifard, Normal supercharacter theories and their supercharacters, J. Algebra, 469 (2017), pp. 464– 484.
[2] C. A. M. Andre´, Basic characters of the unitriangular group, J. Algebra, 175 (1995), pp. 287–319.
[3] J. L. Brumbaugh, M. Bulkow, P. S. Fleming, L. A. Garcia German, S. R. Garcia, G. Karaali, M. Michal, A. P. Turner, and H. Suh, Supercharacters, exponential sums, and the uncertainty principle, J. Number Theory, 144 (2014), pp. 151–175.
[4] K. Conrad, Dihedral Groups II. Available online at: http://www.math.uconn.edu/~kconrad/blurbs/ grouptheory/dihedral2.pdf, 2018.
[5] P. Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra groups, Trans. Amer. Math. Soc., 360 (2008), pp. 2359–2392.
[6] L. Dornhoff, Group representation theory. Part A: Ordinary representation theory, vol. 7 of Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1971.
[7] A. Hendrickson, Supercharacter theories of finite cyclic groups, PhD thesis, Department of Mathematics, University of Wisconsin, 2008.
[8] A. O. F. Hendrickson, Supercharacter theory constructions corresponding to Schur ring products, Comm. Algebra, 40 (2012), pp. 4420–4438.
[9] G. James and M. Liebeck, Representations and characters of groups, Cambridge University Press, New York, second ed., 2001.