[1] L. Dornhoff, Group representation theory. Part A: Ordinary representation theory, vol. 7 of Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1971.
[2] W. Feit, On a conjecture of Frobenius, Proc. Amer. Math. Soc., 7 (1956), pp. 177–187.
[3] P. Flavell, A note on Frobenius groups, J. Algebra, 228 (2000), pp. 367–376.
[4] G. Frobenius, Uber aufl¨osbare Gruppen. IV. ¨ , Berl. Ber., 1901 (1901), pp. 1216–1230.
[5] L. C. Grove, Groups and characters, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1997. A Wiley-Interscience Publication.
[6] M. Hall, Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959.
[7] B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, SpringerVerlag, Berlin-New York, 1967.
[8] W. Knapp and P. Schmid, A note on Frobenius groups, J. Group Theory, 12 (2009), pp. 393–400.
[9] , Frobenius groups of low rank, Arch. Math. (Basel), 117 (2021), pp. 121–127.
[10] H. Kurzweil and B. Stellmacher, The theory of finite groups, Universitext, Springer-Verlag, New York, 2004. An introduction, Translated from the 1998 German original.
[11] D. Passman, Permutation groups, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
[12] R. H. Shaw, Remark on a theorem of Frobenius, Proc. Amer. Math. Soc., 3 (1952), pp. 970–972.
[13] T. C. Tao, A Fourier-analytic proof of Frobenius’ theorem. https://terrytao.wordpress.com/2013/05/ 24/a-fourier-analytic-proof-of-frobeniuss-theorem/, 2013.