[1] Y. Alipour-Fakhri and M. Rezaii, The warped sasaki–matsumoto metric and bundlelike condition, J. math. phys., 51 (2010), p. 122701.
[2] R. G. Beil, Electrodynamics from a metric, Int. J. Theor. Phys., 26 (1987), pp. 189–197.
[3] J. Kern, Lagrange geometry, Arch. Math. (Basel), 25 (1974), pp. 438–443.
[4] M. Khameforoush Yazdi, Y. Alipour Fakhri, and M. M. Rezaii, Einstein metrics on warped product Finsler spaces, Acta Math. Acad. Paedagog. Nyh´azi. (N.S.), 33 (2017), pp. 373–385.
[5] M. Matsumoto, The Tavakol-van den Bergh conditions in the theories of gravity and projective changes of Finsler metrics, Publ. Math. Debrecen, 42 (1993), pp. 155–168.
[6] R. Miron and M. Anastasiei, The geometry of Lagrange spaces: theory and applications, vol. 59 of Funda[1]mental Theories of Physics, Kluwer Academic Publishers Group, Dordrecht, 1994.
[7] , Vector bundles and Lagrange spaces with applications to relativity, vol. 1 of Balkan Society of Geometers. Monographs and Textbooks, Geometry Balkan Press, Bucharest, 1997. With a chapter by Satoshi Ikeda, Translated from the 1987 Romanian original.
[8] R. Miron, M. Anastasiei, and I. Bucataru, The geometry of lagrange spaces, in Handbook of Finsler geometry. I, P. Antonelli, ed., vol. 1, Kluwer Academic Publishers Group, Dordrecht, 2003, pp. XXXIV+1437.
[9] R. Miron and R. Tavakol, Geometry of space-time and generalized Lagrange spaces, Publ. Math. Debrecen, 44 (1994), pp. 167–174.
[10] R. Miron, R. Tavakol, V. Balan, and I. Roxburgh, Geometry of space-time and generalized lagrange gauge theory, Publ. Math. Debrecen, 42 (1993), pp. 215–224.
[11] M. M. Rezaii and Y. Alipour-Fakhri, On projectively related warped product Finsler manifolds, Int. J. Geom. Methods Mod. Phys., 8 (2011), pp. 953–967