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1. Preliminaries

The notion of Lagrange spaces (or Lagrange geometry) was introduced and studied by J. Kern (see [3]). We study
the geometry of Lagrange spaces as a sub-geometry of the geometry of tangent bundle (T'M, 7, M) of a manifold
M, using the principles of Analytical Mechanics given by variational problem on the integral of action of a regular
Lagrangian, the law of conservation, Nother Theorem, etc. Note that the Euler-Lagrange equations determine a
canonical semi-spray S on the manifold 7M. Thus we study the geometry of the warped Lagrange space using this
canonical semi-spray S. In 1987, there some books were published on the Lagrange, Hamilton and the generalized
Lagrange spaces (see [7], [6] and [8]).

There is not much research on the results of the warped products of Lagrange and Finsler spaces (see [1], [11] and
[4]), and there is not any research on the warped product of the generalized Lagrangian spaces in our knowledge.

The Riemannian spaces class {R"} is a subclass of the Finsler spaces class {F"}, the class {F™} is a subclass
of Lagrangian spaces class {£"}, and this is a subclass of the generalized Lagrangian spaces {GL"}. So, we have
the following sequence of inclusions:

{R"} c{F"} c{L"} c{gL"}.
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In this paper, we show that
{WR"} c {WF"} c {WL"} C {WGL"},

where the letter YV denotes the warped product.

2. Introduction

Suppose that M is a real smooth manifold with the tangent bundle ("M, 7, M) and JO“M =TM — {0}.
A differentiable Lagrangian is a mapping

L:TM — [0,00)

of class C*° on T'M and continuous on the null section 0 : M — T'M of the projection w : TM — M.
The Hessian of a differentiable Lagrangian L with respect to y* has the elements:

1 0%L
i y = 1
Evidently, the set of functions g;;(z,y) are the components of a d-tensor field, symmetric and covariant of order 2.
Also, a differentiable Lagrangian L is called regular if:
rank (gij(x,y)) =n, on TM. (2)

A Lagrange space is a pair L™ = (M, L(z,y)) formed by a smooth, real n-dimensional manifold M and a regular

o
Lagrangian L(z,y) for which the d-tensor g;;(z,y) has a constant signature over the manifold 7M. The mapping
L(z,y) is called the fundamental function, and g;;(x,y) the fundamental tensor. For example, every Riemannian
manifold (M, g;;(x)) determines a Lagrange space L™ = (M, L(x,y)), where

L(z,y) = gij()y'y’.
One of the most important and practical examples is the electromagnetic space.

Example 2.1. The following Lagrangian from electrodynamics [7]
i, 2e i
L(z,y) = mevi(2)y'y’ + —Ai(x)y" +U(x)

where v;;(x) is a pseudo-Riemannian metric, A;(z) a co-vector field and U(x) a smooth function on M, m, c, e
begin the known constants from Physics, determine a Lagrange space L™ = (M, L(x,y)). It is called the Lagrange
space of electrodynamics.

A first natural generalization of the notion of Lagrange space is called a generalized Lagrange space. R. Miron and
M. Anastasiei introduced this notion (see[7] and [6]). A generalized Lagrange space is a pair

GLn = (Magij(xvy))v

[e]
where g;;(x,y) is a d-tensor field on the manifold TM of type 2, symmetric, of rank n, and has a constant signature

on TM. One easily sees that any Lagrange space L™ = (M, L(z,y)) is a generalized Lagrange space with the
fundamental tensor

10%L(x,
gij(x,y) = 2(9gﬂ(8yﬂy) 3)

However, each space GL" is not a Lagrange space L™. In fact if g;;(x,y) is given, it may happen that the system
of PDE (3) does not admits solutions in L(z,y).

Theorem 2.1. ([7])

(1) A necessary condition in order that the system PDE (3) to admits a solution L(x,y) is the d-tensor field

1 agij

be completely symmetric.
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(2) If the condition (1) is verified and the g;;(x,y) are 0-homogeneous with respect to yi, then the following function
L(z,y) = gij(z,9)y"y’ + Ai(2)y’ +U(2), (5)

is a solution of the system of PDE (3) for any arbitrary d-covector field A;(x) and any arbitrary function
U(x) on the base manifold M.

The proof of the previous statement is not complicated. When the system (3) does not admit solutions in the
functions L(z,y), we say that the generalized Lagrange space GL™ = (M, g;;(x,y)) is not reducible to a Lagrange
space.

Remark 2.2. The Lagrange spaces L™ with the fundamental function (3) give important classes of Lagrange spaces,
including the Lagrange space of electrodynamics (see Example 2.1).

Example 2.2. (1) The pair GL™ = (M, g;;) with the fundamental tensor field

gij (@, y) = "Wy (x) (6)

where the function o : TM :— R is a class C™ and v;;(x) is a pseudo-Riemannian metric on the manifold M
do

is a generalized Lagrange space if the d-covector field Gy Mo vanishes. It is not reducible to a Lagrange space.
R. Miron and R. Tavakol [9] proved that GL™ = (M, g;;(x,y)) defined by (3) satisfies the Ehlers - Pirani -
Schilds’ axioms (or EPS axioms) of General Relativity. Also, in [10] R. Miron, R. K. Tavakol, V. Balan, and
I Rozburgh present the Einstein and Maxwell equations for the generalized Lagrange space (6) and characterize
the case of vanishing mixed curvature tensor field of the canonical linear d-connection.

(2) The pair GL™ = (M, g;;(x,y)) with

%yiyj) .y =i (x)y’ (7)

i (T, Y) = Vij 1-
g5 (@) =) + (1= g

where g;;(x) is a pseudo-Riemannian metric and n(x,y) > 1 is a smooth function (m is a refractive index).
It gives us a generalized Lagrange space GL™ which is not reducible to a Lagrange space. R. G. Beil calls it
Miron’s metric from Relativistic Optics (see [2]).

3. The warped generalized Lagrange space (WGL)

Let GL™ = (M, g;j(z,y)) and GL" = (M, Ju 5(u,v)) be two generalized Lagrange spaces of dimension m and n,
respectively, and f € C°°(M) be a positive function. We define the warped generalized Lagrange space as follows

WGL™™ = (M x5 M, Gab = gij + [*Gap)- (8)

For example let (M, L(z,y)) and (M, L(u,v)) be Lagrangian spaces and L : TM = TM & TM — R is defined as
follows

L(aj, u, Yy, U) = L(xv y) + fQ(x)Z(u, ’U),
then (M x ¢ M, L(x,u,y,v)) is a WGL space whose fundamental tensor is

10°L(z, u,y,v) 10°L(z,u,y,v)

gab(xa u,y, ’U) - 2 8yz8y1 T f2 ((ﬂ) 2 Ov>OvP
_12L(z,y) | e, 10°L(u,v)
=5 g0y T 3 50ag08

Notation. In this paper, a local coordinates system in M is denoted by x@ = (2%, u®), where (2%) and (u®) are
local coordinates system in M and M, respectively. Also, the indexes {i,j, -}, {a, 3,---} and {a,b,- - -} run over
the ranges {1,2,--- ,m}, {1,2,--- ,n} and {1,2,--- ;m,m+1,--- ,m + n}, respectively.

Suppose Nisa warped non-linear connection on TM = TM&TM whose local coefficients are N = (1\7;, Kfé, N]"‘, ﬁg‘)

(see Sectiond). Next, V(T'M) kernel of the differential of the product projection map
7= (mm) :TM&TM — M x; M
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o —
is known as wvertical bundle on the tangent bundle T'M is considered. Hence, we have

V(%M) = spcm{ 881 aia }

So, using the coefficients of non-linear N , the warped non-holonomic vector fields are defined as

o0 ~; 0 ~5 0
szt Oxt L Qyd - B’ )
5* 0 .0 ~, 0
— 2 _ NP
du®  Ju Naa Na ovP’ (10)

which enable us to construct a warped complementary vector subbundle H (TM ) to V(T]T/I/ ) in T(TM ) that is
locally:

° o* o
H(TM) = span{(S - 5ua}
We call H (JO“M ) the warped horizontal distribution on T(%M ), and we have
T(TM) = H(TM) & V(T'M).

Now, we define the following new operators (see [11]):

0 -, 0
oyt T Oy TN G (1)
r _ 9 ;2 (12)

o> Qv @Oy’

and we put V*(%M) = span{g%, 861%}' It follows that V*(ZO“M) = V(%M), and so, the tangent bundle of M
admits the decomposition
T(TM) = H(TM)® V*(TM). (13)

Let us assume that (I'M @&y TM,7 = (7,7), M x; M) is endowed with a non-linear connection N. Then
every vector field X on M x; M determine on unique vector field X" on TM @©; TM such that d7(X"") =
(dm,d7)(X"") = X. The vector field X"" is called the warped horizontal lift of X € x(TM @7 TM). In order to

derive a local representation for X", we put ( 821' + &%) = 56; + 5‘%. Therefore, using (13) the non-linear

connection N induces a decomposition of every X € TM @; TM as a sum of its warped horizontal and vertical

parts X = h*X +0v*X = X" 4+ X?". It follows that a linear connection DonTM =TM Dy TM is a d-connection
if and only if one of the following conditions holds:

(i) v*Dxh*Y = 0,h*Dxv*Y =0,
(i7) DXY h* DXh*Y—H) Dxv*Y,
(iii) Dxh* =0, Dxv* = 0.

ozt

associated with N, respectively, and X,Y € ™ ([11]). A tensor field T of type (p +r,q+ s,p' +1',¢ +§') on

Here, h* := & @dzi + (;% Rdu® and v* := aiyi ®R6*y' + &% ® d*v® are the warped horizontal and vertical projector

TM =TM @ TM is said to be the warped d-tensor field or M-tensor field of type [];121 Zi;:} on TM if
T(wl,... syl Xy X, XL oo XD,
Wpt1s 7wp+'r‘aw;:7/+17"' 7W1/7'+r'an+1a"' an+st(;/+17"' 7x(’1,+s,) =
T(h*wl,--- Jhrwp, Ry, R W W X W X B X R X
'l)*UJp+17'” 7U*wp+r,’l)*w;;/+17'” ,U*w;,,+r,,v*Xq+1a"‘ ’U*Xq-ps,v*X(II/—i-l?’” v Xq +S,)
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/ /
Locally, a warped d-tensor field of type B 15 , ; i 2/] may is written in the form
| ireiporay jregofiefy 6" 5 5
T =T kniery il 5gmn € O 5o @ 5o € ® 557
o K- 76* X 78* & oy 78* X
ayﬂl ayJ7 avﬁl 8'Uﬂ7"/

de" @ .. Qdef @ duM ® - ® dut ®
Syt @ @5y @5 VM @ - @ 8ok,

Corollary 3.1. We can associate to every warped d-connection on TM two new operators of h*-covariant deriva-

+p/ ,r,+,r/

tion and v*-covariant derivation in the algebra of warped d-tensor fields of type [p ,} on TM. Indeed,

g+q s+s

it 1s clear that any warped d-connection D on TM leads to the composition
DxY = Dy-xY + Dy-xY, VX,Y € x(TM = TM &; TM). (14)

We put, 5’};}/ = lsh*XY and ngY = 151)*XY. The operators D" and DV are called the warped h-covariant
derivation or h*-covariant derivation and the warped v-covariant derivation or v*-covariant derivation, respectively.

It is obvious that for every X,Y € X(TM ), we have
(i) v*D% h*Y =0, h*D¥% v*Y =0, v*D{ h*Y =0, h*D% v*Y =0,
(i) D%'Y = h*D% h*Y +v* D% v*Y, DY = h*D¥{ h*Y + v*D% v*Y. (15)

Therefore, if X = X* 2 + X L and Y = Yl 8 -+ Y aia then we have

dx? dou®

() EX* = X'D s +X 5557*,
Szt u®
~ % L~ L
(ii) DY =Y'Do +Y D g . (16)

ayt

Now D be a d-connection on the tangent bundle ™™ = TM & f TM, thus there exists a unique system of
functions

(gc)_( ;'ka %k? j)\aLﬂM ]k" gkv j)\aLﬂA)

and _
(Ogc) = ( i kvcﬁ k7C] )\705 A Mg lmcﬂ kaC] )\acﬂ )\)
such that
~ ; ~ s P
(1) Da % 6u‘ - LJ kthl +LJ k&Tﬂ (3) Dfx 5lj - LJ Aéaf +LJ A&Tﬂ (17)
i 5" i
(@) D gor = Lhidm + L3 agee | () D 3 = Lh s + L3 e
and
(1) D%W_C;kay +Cakava (3) Dakayz _CJlABy +Camv*a (18)
(2) Doy, 25 =Ch B + 08 1= (4)D3* a7 = Ch b + 08 s iw

The real functions (Eg (@, u,y, v)) and (52 p(T,u,y, v)) are called the warped horizontal and vertical (respectively)
local coefficients of D with respect to the adapjed 1oc~al frame {(;%, 6‘;—*&, g—;, 5371 .
Also, the warped torsions of d-connection DI' = (L, C') are given by
N~

Ty = Lg, Lba’Sab_C Cba7 Wb Wb@_ a bs (19)
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o o 9*
where Biyb = (qu, m)
For example, let
_ mijap * * 1 0" *
T_Tklku(;zi ®---®0y ®6ua ® @0 v
1+1 141 o s . N . o .
be a warped d-tensor field of type 141 141)° then its h*-covariant and v*-covariant derivatives are respectively;

(I)Eh;‘ T= Tijaﬁ* 56;1'
52T kiaul,
®---®5*yl®5‘%®---®5*v“,

®...®5*yl®%®...®5*v#

(2)Dh. T =T
SuT k| .

®...®5*yl®%®...®5*vﬂ

(3)D'. T =T 2
oyt Elxpl|,
(4)D%. T = TP, 55; Q- ®6Y ® (;% ® - @ 5 VH,
ovT IOV
where
srtjaf
jaB Kl 0BT iraf T B oy T8
roes = M S T + T+ T T,
t
_Tijaﬁir i Tijaﬁzr _ Tijaﬁz“/ _ Tija/‘}EV (20)
rixp Tkt krap ™t klyp ~ Xt kIAy “tp
B §*T]z{§(ﬁ B B B
ijo o 12 rjoaB T irafB T g Y8BT ijay T8
Tkz,\;ﬁ = Sur T Tiirg Lrr + Tyang L + T, L9+ + Thiy, Ly
_TijaBZr _ Tijoz,li""r _ Tijaﬂz'y _ Tijoz[iz»y (21)
ridp kT krap Tl klyp “ At kixy HTpo
y il . g .
e~ D L e dy T+ THRC + TG,
t
_Tijaﬁér _ Tijaﬁ ~ro Tijaﬂgw _ Tijaﬁgvv (22)
rixp 'kt krap ~tl klyp ~ At KlAy “tpo
B *le{;\lﬁ B B B
ijo _ © rioB /i iraf ~j 5B ijory B
Tkl,\uﬂ = "o T Tying. Cre + Ting, O + Ty, OFr + Tian, CFy
ijaf o~ ijaB o~ ijaB Ay ijaB o~
-1, C]’,C‘T - Tkrkuc;‘l - Tkl'y;,e C}x‘r - Tklky C;/,IU (23)

rilp

. 0 o

Definition 3.2. By using (11) and (12), we notice that there exists on TM =TM &TM the warped vertical field
(24)

— vy
L:=y o +v 907

o —
which does not vanish on the manifold TM and is independent of any Riemannian metric on the base manifold

M=M x¢ M. It is called the warped Liouville vector field.
Corollary 3.3. Let WGL™" = (M x; M, gi; + f2§a@) be a WGL space. Then the tensors
gab(x7 u,y, U) = Gij ('Ta y) + f2($)§a6(uv U)

are 0-homogeneous with respect to (y*,v®) if
k0" Fa k 09ij 2,k A A Ya
YR =y 4+ YN =
oy oy ov (25)
23, Nk 09ij 2, 11994
pnY Gab _— o1 J / [CR—
v a —vNuayk—l—fv S = 0.

It is obvious that if the tensors gup(x,u,y,v) are 0-homogeneous with respect to (y*,v®), i.e., the system equations
(25) are hold, then the tensors gi;(x,y) and g,s(u,v) are not necessarily 0-homogeneous with respect to y* and v*,

respectively.
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The following theorem comes immediately from Corollary 3.3.

Theorem 3.4. If the WGL space WGL = (M x; M, g;; + f2§a5) is reducible to Lagrangian space, then the

generalized Lagrangian spaces GL = (M, g;;) and GL = (M, Gap) are mot necessarily reducible to a Lagrangian
spaces.

Corollary 3.5. If WGL = (M x; M, g;; + f2§a5) 1s reducible to Lagrange space then, the function
Lz, u,y,v) = gi;(z,9)y'y’ + As(@, w)y’
+ 2(2)Gap (u, 0)00" + f2(2) Ba(2, u)v® + ¥(z,u) (26)
s a solution of the PDE _ N
1 0*L n 1 0*L
C20yioyl 2 0veouB’

gab(mv u,y, 'U)

where A;(x,u) and By (z,u) are two covector fields, and ¥(x,u) is a smooth function on M X ¢ M.

4. Geometry of warped generalized Lagrangian space
In this section, we will consider a WGL space

WGL:(M:foM,§:g+62f§),

where M is a warped pseudo Riemannian manifold, Y, (z, ) 1= vii () + et (r)ﬁaﬂ(u) a warped metric tensor field

on M, and f: M — R a function of class C*° on M. If we denote the Christoffel symbols of M, M, and M by
ry ., 1"; , and I‘Z , respectively. Then we have

(Fro) = (B3 T T T3 T ),
where

Ui (@) =T (2), T4 \(z,u) =0, Th (z,u) = —(e @), (u) o
T (z,u) =0, T%,(x,u) = f;(2)6%, T \(z,u) =T \(u).

Here, f; := ggi and (e2/)" .= fyij—%e;f.

Now, we will assume that the following axioms hold:
A1- The warped fundamental tensor field gup(x, u,y,v) has the form

Eab(x’ u,y, U) = eQU(I’y)’YZ’j (l’) + le(x) : 62p(u,v)7aﬁ (U), (28)

where 0 : TM — R and p : T@% R are two C* functions on TM and TM, and continuous on the null sections
of tangent bundles 7'M and T'M, respectively. _

A2- The space WGL = (M Xy M, gap(z,u,y,v)) is endowed with the non-linear connection N, whose coefficients
are

() = (Ni@,u,9,0), Njw, . ,0), N7 (2,0, ,0), N§ (2,0, 9,0) ),

where
N =T9 " + 9 0%, Ng :=T§ o +T5 o
A3- The WGL space is endowed with the canonical warped metrical d-connection W DT (IN).
Corollary 4.1. By using (27) and (29) we have
Ni=T% .y = Ni(z), Nj = —(e*) 7507, (30)
Ny = g, N5 =T 0t + 55, @)
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The important point is that axiom A1 show that the WGL space with the warped metric tensor (28) has the same
conformal structure as the warped Riemann space specified by v;;(x) + 62(f+p_”)7a6(u). Also, axiom A2 and (41)
implies that the auto-parallel curves of the warped non-linear connection N with the coefficients (30) and (31) are
coincident with the auto-parallel curves of the warped Riemannian space (M x y M,~;;(z) + €2/5,,5(u). Therefore,
under axioms Al, A2 and A3, the warped generalized Lagrange space W GL represents a convenient relativistic
model. . -

In the WGL™ " space, endowed with a nonlinear connection N we can introduce the d-connection DI' =

(Lgc, “C). The coefficients of the warped canonical metrical d-connection are given by the warped generalized
Christoffel symbols:

Ti o 1l 5 ng 3*ga _ 97gjk
ik =39 + 5w 52l
Ti . 1l 6 gk \ _. T
L =39 ( 5 ) =t Lip
i1 (8¢ gs
B = T29 Szl (32)
~cyk = _%e—2f§a/\ 5" ng
J
To .1 e—2fgaX 5*e? g;»\ . Ta
Bk = 2¢ 9 Sak = g
Ta . l—aup 5*-‘7#13 6*§>\u . 6*§ﬁ>\
pr =29 ( Sux T suf T our
and
i .1 9" QIJ 9 gu  9"gjk
k= 39" ( + Sy 3y
~ioo._ 1l (0% \ . i
Chr = 39" (T ) = Cig
Oy = —Lgit AR TN
BA " yl (33)
Ao . _1l,—2fgaA o ggk
gk "= T2 9 a
Fa . 1 —2f—ax( 07 g5,
Chr =377 ( ; ) = g
o 1—ap (9 Gus 9" Gru N
8= 29 ( gox T P o

where g;;(2,y) = e27@¥);;(z) and g, z(u, v) == 2074 (u).
Corollary 4.2. By using (32), (33), and Corollary 4.1 it results that

Zék = I‘;k + (5,20\). + 5§J‘k — grjot = Lé.k
i (ezf)l(%rﬁ 0"
NT,B/\ -1 (er)i672a+2p7ﬁ>\ (1 oh a@ﬁ)
Z;fk = —ezf( f) 201 e~y
Bk = gk‘W( ““a%)
LGy =Ton +pi505 + PI50% — Gpar”
— Iy’ ( o x5 + avrf(s —Jpap )
=L~ fiy’ ( 508 + un 0% ?BAP”>

and

Cly, = 030% + 604 — 6igjn = Clp
Chy, = Nio;6}

6}3,\ = _62f§ﬂ,\9il]\~]zupu

~qu = —6_2f§a“ﬁﬁdl9jk

Cgy. = Nipadg

= . . . y— -
Chx = Pa05 + oy — p“gpx = Cpa
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._ b0 _ J O -‘_‘k~ < . 0 s . Op  a._ —=af uap
where 0|, = 5% = ax@ - N; 8;], vi=g" oy, 04 = 6—;, Pa = e, P = go‘ﬂpﬁ, and Pz — Nyakx

Corollary 4.3. Suppose the function p is 0-homogeneous with v, and (ezf(z)) = 0. Then by using Corollaries 4.1
and 4.2, we have

L =0, Ly =0, LS, =0, Lg, =T,
and . .
CékZO, Cé)\zo Ck—O Cﬁk—o
In what follows, we shall deal with the warped normal d-connections DT which is compatible with the warped

fundamental tensor of the WGL space WGL = (M = M x; M,§ = g+ ¢*'g).

Proposition 4.4. The following properties hold

5 : 4
Gig: = — —gszhj gkijh =0,
h
3" g:
gijT = 53A] gsz)\] - gkg )\ =0,
A
_ 5*G, _ _ = 9Ff — _ 34
g’lﬂT = 5 ga#LZ,B B guﬁLzh - *QWJ;gaﬁ = (ezfgaﬁ)T =0, (34)
h h
Gug, = PTas g TH g Tu g
gaﬂT = %uwr " Yaptigy T Guptap =
A
and
5% g, ~ ~
Gig: = a_,ch — 9ikCr; — griCly, = 0,
h
5 gi. ~ ~
gijﬁ = 55AJ - gikcl)fj - gkjcik)\ =0,
A
_ "G _ 5 _ 35
Gap. = a7~ JauChs = GusCon =0 (35)
h
— o -~ -~
gaﬁ‘*‘ = Bv*ﬂ - gaMCgA o gﬂﬁcgli =0
A
Corollary 4.5. It follows from Proposition 4.4 that the WGL space
WGL = (M ><f Ma gab(xvuvyv U) = gz_](xvy) + 62f(r)§oz6(ua U)))
1s the warped metrical, i.e.,
Gav. =g+ (MG05): =0 Gun. =95+ (Mas): =0, (36)
h I'n [ I'x I'x I\
and
Jab. = Gij. + (€2f§a5)* =0, gab. = gij. + <€2f§a5)* =0. (37)
Il Il I Y Il [N

Theorem 4.6 (The Main Theorem). The WGL space with the metric (28) to satisfy the EPS conditions, that
(T8.) = (T.) if and onty if
1 the function p is 0-homogeneous with respect to v* and (e2f) =0 (<:> Sk 7““ =0) foranyi=1,---,m;

2 the function o(x,y) is h-constant on M, i.e.,

do do
=— —T(a)ky = =0 38
o), = 5~ L(@)iy Y ggr =0 (38)
3 the function p(u,v) is h*-constant on M=M X g M, i.e.,
dp  ~, Op
P~ gur ~ Mg 0 (39)
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We call relationships (38) and (39) the warped Tavakol-Van den Bergh conditions.

Let c:t € [0,1] = (2°(¢),u(t), 4 (t),v*(t)) € TM & TM be a curve of class C* then, its tangent vector field
dc

S¢ can be written in the following form

@_dmi6*+d£5*+5*yi8+5*v“i (40)
dt — dt 6xt  dt duc  dt Oyt dt Ov™’

where, §*y* := dy® + N;dxj + Néduﬂ and 0*v® = dv® + N;’“dxj + ]\~f§‘duﬁ are the dual basis of the adapted basis

(5‘5—;7 (;%). The curve c is an (warped) auto-parallel of the warped non-linear connection N if

6*yi7dyi ~.d]‘ ~'dﬁ7 '7di
=G TN + N =0, v =G

dt Jdt B dt dt >
v dv® N da? Nadu® a _ du® (41)
o = ‘ar t N+ Ng G =0, v =G
The warped vector field Dg. X, where
S 0F 0* .0 0
dc = dx'— + du® Oy — + 0" — 42
¢ mé:ﬂ—’—u&ua_'_ y8y2+ Y e (42)

will be denoted by DX and will be called the warped covariant differentiation of X € X(TM ).

Corollary 4.7. Suppose that o := oo Py and p := po Py are the lift of o and p to TM =TM @ TM, respectively,
where P, : TM & TM — TM and Py : TM & TM — TM are projection maps. If the functions o and p apply to
condition the warped Tavakol-Van den Bergh, then o and p are constant on the warped auto-parallel curves of the
warped non-linear connection N given by (29). In particular, the warped absolute energy of the WGL space

&z, u,y,v) == e(x,y) + e @z(u, v)

= 620(%9)%]. (x)y'y’ + le(I)e%(“’”)ﬁaﬂ (u)v®0?, (43)
is the warped h*-constant, and consequently it is constant on the warped auto-parallel curves of the warped non-linear
connection given by (29).
Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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