[1] B. Alizadeh, E. Afrashteh, and F. Baroughi, Combinatorial algorithms for some variants of inverse obnoxious median location problem on tree networks, J. Optim. Theory Appl., 178 (2018), pp. 914–934.
[2] B. Alizadeh and R. E. Burkard, Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees, Networks, 58 (2011), pp. 190–200.
[3] B. Alizadeh, R. E. Burkard, and U. Pferschy, Inverse 1-center location problems with edge length augmentation on trees, Computing, 86 (2009), pp. 331–343.
[4] B. Alizadeh and R. Etemad, Optimal algorithms for inverse vertex obnoxious center location problems on graphs, Theoret. Comput. Sci., 707 (2018), pp. 36–45.
[5] F. Baroughi Bonab, R. E. Burkard, and E. Gassner, Inverse p-median problems with variable edge lengths, Math. Methods Oper. Res., 73 (2011), pp. 263–280.
[6] J. Brimberg, H. Juel, and A. Schobel ¨ , Locating a circle on the plane using the minimax criterion, Studies in Locational Analysis, 17 (2009), pp. 46–60.
[7] , Locating a minisum circle in the plane, Discrete Appl. Math., 157 (2009), pp. 901–912.
[8] R. E. Burkard, M. Galavii, and E. Gassner, The inverse Fermat-Weber problem, European J. Oper. Res., 206 (2010), pp. 11–17.
[9] R. E. Burkard, C. Pleschiutschnig, and J. Zhang, Inverse median problems, Discrete Optim., 1 (2004), pp. 23–39.
[10] , The inverse 1-median problem on a cycle, Discrete Optim., 5 (2008), pp. 242–253.
[11] M. C. Cai, X. G. Yang, and J. Z. Zhang, The complexity analysis of the inverse center location problem, J. Global Optim., 15 (1999), pp. 213–218.
[12] Z. Drezner, S. Steiner, and G. O. Wesolowsky, On the circle closest to a set of points, vol. 29, 2002, pp. 637–650. Special issue: Location analysis.
[13] J. Fathali, A row generation method for the inverse continuous facility location problems, Comput. Ind. Eng., 171 (2022), p. 108482.
[14] M. Galavii, The inverse 1-median problem on a tree and on a path, Electron. Notes Discrete Math., 36 (2010), pp. 1241–1248.
[15] M. Gholami and J. Fathali, Mathematical models for the variable weights version of the inverse minimax circle location problem, J. Math. Model., 9 (2021), pp. 137–144.
[16] , The semi-obnoxious minisum circle location problem with Euclidean norm, Int. J. Nonlinear Anal. Appl., 12 (2021), pp. 669–678.
[17] , The inverse minisum circle location problem, Yugosl. J. Oper. Res., 32 (2022), pp. 153–165.
[18] X. Guan and B. Zhang, Inverse 1-median problem on trees under weighted Hamming distance, J. Global Optim., 54 (2012), pp. 75–82.
[19] M. Labbe, G. Laporte, I. Rodr ´ ´ıguez Mart´ın, and J. J. Salazar Gonzalez ´ , Locating median cycles in networks, European J. Oper. Res., 160 (2005), pp. 457–470.
[20] D. T. Lee and Y. F. Wu, Geometric complexity of some location problems, Algorithmica, 1 (1986), pp. 193– 211.
[21] R. F. Love, J. G. Morris, and G. O. Wesolowsky, Facilities location: Models and Methods, (1988).
[22] M. Nazari and J. Fathali, Inverse and rverse 2-facility location problems with equality measures on a network. accepted 2021, In Press.
[23] , Reverse backup 2-median problem with variable coordinate of vertices, Int. J. Oper. Res. Appl., 15 (2018), pp. 63–88.
[24] M. Nazari, J. Fathali, M. Nazari, and S. m. Varedi Koulaei, Inverse of backup 2-median problems with variable edge lengths and vertex weight on trees and variable coordinates on the plane, J. Oper. Manag., 9 (2018), pp. 115–137.
[25] K. T. Nguyen, Inverse 1-median problem on block graphs with variable vertex weights, J. Optim. Theory Appl., 168 (2016), pp. 944–957.
[26] K. T. Nguyen and A. R. Sepasian, The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance, J. Comb. Optim., 32 (2016), pp. 872–884.
[27] S. Omidi and J. Fathali, Inverse single facility location problem on a tree with balancing on the distance of server to clients, J. Ind. Manag. Optim., 18 (2022), pp. 1247–1259.
[28] S. Omidi, J. Fathali, and M. Nazari, Inverse and reverse balanced facility location problems with variable edge lengths on trees, Opsearch, 57 (2020), pp. 261–273.
[29] A. R. Sepasian and F. Rahbarnia, An O(n log n) algorithm for the inverse 1-median problem on trees with variable vertex weights and edge reductions, Optimization, 64 (2015), pp. 595–602.