Navigation problem on Finsler manifolds

Document Type : Original Article

Authors

Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences, Peking University, China

Abstract

In this article, we are going to discuss the geometry of the navigation problem on a Finsler manifold. We will give proofs for several important local and global results.

Keywords

Main Subjects


[1] H. Akbar-Zadeh, Surles espaces de Finsler a courbures sectionnelles constants, Bull. Acad. Roy. Bel. Bull. Cl. Sci. 74 (1988), 281-322.
[2] D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geom. 66 (2004), 377-435.
[3] R. Bryant, Some remarks on Finsler manifolds with constant flag curvature, Houston. J. Math. 28 (2002), 221-262.
[4] S. S. Chern, Riemannian geometry as a special case of Finsler geometry, Contem. Math. 196 (1996), 51-58
[5] S. S. Chern and Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, 6. World Scientific Pub[1]lishing Co. Pte. Led., Hackensack, NJ, 2005, x+192, pp.
[6] X. Cheng, X. Mo and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature, J. London Math. Soc. 68 (2003), 762-780.
[7] X. Cheng and Z. Shen, Randers metrics of scalar flag curvature, J. Aust. Math. Soc. 87 (2009), 359-370.
[8] L. Huang and X. Mo, On geodesic of Finsler metrics via navigation problem, Proc. Am. Math. Soc. 139 (2011), 3015-3024.
[9] L. Huang and X. Mo, On conformal fields of a Randers metric with isotropic S-curvature, Illinois Journal of Mathematics, 57 (2013), 685-696.
[10] L. Huang and X. Mo, On the flag curvature of a class of Finsler metrics produced by the navigation problem, Pacific J. Math. 277 (2015), 149-168.
[11] N. C. Jeanne and G. M. Christopher, Sub-Finsler geometry in dimension three, Diff. Geom. Appl. 24 (2006), 628-651.
[12] R. Miron, D. Hrimiuc, S. Drago and S. Sabau, The geometry of Hamilton and Lagrange spaces. Fundamental Theories of Physics, 118 (Kluwer Academic Publishers Group, Dordrecht, 2001)
[13] X. Mo, Flag curvature tensor on a closed Finsler space, Result Math. 36 (1999), 149-159.
[14] X. Mo, A global classification result for Randers metrics of scalar curvature on closed manifolds, Nonlinear Analysis, 69 (2008), 2996-3004.
[15] X. Mo and L. Huang, On curvature decreasing property of a class of navigation problems, Publ. Math. Debrecen, 71 (2007) 141-163.
[16] X. Mo and C. Yu, On the Ricci curvature of a Randers metric of isotropic S-curvature, Acta Math. Sinica, 24 (2008), 911-916.
[17] X. Mo and C. Yu, On some explicit constructions of Finsler metrics with scalar flag curvature, Canadian J. Math.62 (2010), 1325-1339.
[18] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Janpan. 14 (1962), 333-340.
[19] G. Randers, On an asymmetrical metric in the four-space of general relativity, Phys. Rev. 59 (1941), 195-199.
[20] C. Robles, Geodesics in Randers spaces of constant curvature, Trans. Amer. Math. Soc. 359 (2007), 1633-1651.
[21] Z. Shen, Lectures on Finsler geometry, World Scientific Publishing Co., Singapore, 2001. xiv+307 pp.
[22] Z. Shen, Conjugate radius and positive scalar curvature, Math. Z. 238 (2001), 431-439.
[23] Z. Shen, Two-dimensional Finsler metrics with constant flag curvature, Manuscripta Math. 109 (2002), 349-366.
[24] Z. Shen, Landsberg curvature, S-curvature and Riemann curvature, A sampler of Riemann-Finsler geometry, 303-355, Math. Sci. Res. Inst. Publ., 50, Cambridge Univ. Press, Cambridge, 2004.
[25] Z. Shen, Differential Geometry of Spray and Finsler Spaces (Kluwer Academic Pbulisher) (2011), 258 pages.
[26] Z. Shen and H. Xing, On Randers metrics with isotropic S-curvature, Acta Math. Sin. (Engl. Ser.) 24 (2008), 789-796.
[27] C. Yu, On dually flat Randers metrics, Nonlinear Anal. 95 (2014), 146-155
[28] C. Yu and H. Zhu, On a new class of Finsler metrics, Diff. Geom. Appl. 29 (2011), 244-254.