The bimodal standard normal density and kurtosis

Document Type : Original Article


1 Department of Statistics, School of Science, Shiraz University, Shiraz

2 Department of Mathematics, Islamic Azad University, Shiraz Branch, Shiraz, Iran.


 In this article, first a density by the name ”The bimodal standard normal density” is introduced and denoted by $b\varphi(z)$. Then, a definition for the kurtosis of bimodal densities relative to $b\varphi(z)$ is presented. Finally, to illustrate the introduced kurtosis, a few examples are provided and a real data set is studied, too.


[1] J. Arrue, H. W. Gomez, H. S. Salinas, H. Bolfarine, A new class of Skew-Normal-Cauchy distribution, SORT-Statistics and Operations Research Transactions, 39(1), (2015) 35-50.
[2] D. Elal-Olivero, Alpha-skew-normal distribution, Proyecciones Journal of Mathematics, 29(3) (2010), 224-240.
[3] K. Pearson, Das Fehlergesetz und seine Verallgemeinerungen Durch Fechner und Pearson, A Rejoinder. Biometrika, 4, (1905) 169-212.
[4] M. Sharafi, Z. Sajjadnia, J. Behboodian, A new generalization of alpha-skew-normal distribution, Communication in Statistics, Theory and Method, 46, (2017), 6098–6111.
[5] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Spring Verlag, New York, 1991.