Zero product determined of abstract Segal algebras

Document Type : Original Article

Authors

Department of Mathematics, Faculty of Mathematical and Computer Sciences, Kharazmi University, Tehran, Iran

Abstract

At the present article, we investigate the notion of zero product determined for category of abstract Segal algebras. Indeed, where $\mathfrak{X}$ is an abstract segal algebra with respect to $\mathfrak{A},$ we prove that under some conditions this notion inherits from $\mathfrak{X}$ to $\mathfrak{A}.$ Applying these results, we obtain some sufficient conditions in which the Fourier algebra $A(\mathfrak{G})$ is zero product determined, when $\mathfrak{G}$ is a locally compact group.

Keywords

Main Subjects


[1] J. Alaminos, M. Breˇsar, J. Extremera, and A. R. Villena, Maps preserving zero products, Studia Math., 193 (2009), pp. 131–159.
[2] J. Alaminos, J. Extremera, A. R. Villena, and M. Breˇsar, Characterizing homomorphisms and derivations on C ∗ -algebras, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), pp. 1–7.
[3] E. Beckenstein and L. Narici, Continuity of injective basis separating maps, Topology Appl., 153 (2005), pp. 724–734.
[4] M. Breˇsar, Zero product determined algebras, Frontiers in Mathematics, Birkh¨auser/Springer, Cham, 2021.
[5] M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong, Mappings preserving zero products, Studia Math., 155 (2003), pp. 77–94.
[6] P. Eymard, L’alg`ebre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92 (1964), pp. 181– 236.
[7] J. J. Font and S. Hernandez ´ , On separating maps between locally compact spaces, Arch. Math. (Basel), 63 (1994), pp. 158–165.
[8] B. E. Forrest and V. Runde, Amenability and weak amenability of the Fourier algebra, Math. Z., 250 (2005), pp. 731–744.
[9] J. E. Jamison and M. Rajagopalan, Weighted composition operator on C(X, E), J. Operator Theory, 19 (1988), pp. 307–317.
[10] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull., 33 (1990), pp. 139– 144.
[11] A. T.-M. Lau and N.-C. Wong, Orthogonality and disjointness preserving linear maps between Fourier and Fourier-Stieltjes algebras of locally compact groups, J. Funct. Anal., 265 (2013), pp. 562–593.
[12] S. M. Manjegani and J. Soltani Farsani, On the Fourier algebra of certain hypergroups, Quaest. Math., 43 (2020), pp. 1513–1525.
[13] V. Runde, Amenable Banach algebras, Springer Monographs in Mathematics, Springer-Verlag, New York, 2020. A panorama.
[14] H. Samea, Essential amenability of abstract Segal algebras, Bull. Aust. Math. Soc., 79 (2009), pp. 319–325.
[15] M. Wolff, Disjointness preserving operators on C ∗ -algebras, Arch. Math. (Basel), 62 (1994), pp. 248–253.