We show that every quasi-multiplier $\phi:L^1(G)\times L^1(G)\longrightarrow L^1(G)$, where $G$ is a locally compact group, is of the form $$\phi(f,g)=f\star \mu\star g,\ \ \ \ \ f,g\in L^1(G),$$ for a unique measure $\mu\in M(G)$. As a consequence, we obtain a well-known result due to Wendel. We also prove the analogues result for $C^*$-algebras. Moreover, we introduce the notion of quasi Jordan multipliers and prove that each such map on a $C^*$-algebra, as well as group algebra $L^1(G)$, is a quasi-multiplier.
Zivari-Kazempour, A. (2025). Quasi-multipliers and quasi Jordan multipliers. AUT Journal of Mathematics and Computing, (), -. doi: 10.22060/ajmc.2025.23476.1260
MLA
Zivari-Kazempour, A. . "Quasi-multipliers and quasi Jordan multipliers", AUT Journal of Mathematics and Computing, , , 2025, -. doi: 10.22060/ajmc.2025.23476.1260
HARVARD
Zivari-Kazempour, A. (2025). 'Quasi-multipliers and quasi Jordan multipliers', AUT Journal of Mathematics and Computing, (), pp. -. doi: 10.22060/ajmc.2025.23476.1260
CHICAGO
A. Zivari-Kazempour, "Quasi-multipliers and quasi Jordan multipliers," AUT Journal of Mathematics and Computing, (2025): -, doi: 10.22060/ajmc.2025.23476.1260
VANCOUVER
Zivari-Kazempour, A. Quasi-multipliers and quasi Jordan multipliers. AUT Journal of Mathematics and Computing, 2025; (): -. doi: 10.22060/ajmc.2025.23476.1260