This article presents the interpolative fixed point theorem with reference to complete partial metric spaces, by taking the multi-valued contraction into account. In particular, the idea of multivalued interpolative Reich–Rus–'{C}iri'{c} type contractions is introduced and criteria for the existence of fixed points' of such operators are established. A nontrivial example is provided to support the validity of the obtained results.
Yahaya, S. and Shehu Shagari, M. (2024). Multivalued interpolative type contractions on partial metric spaces. AUT Journal of Mathematics and Computing, (), -. doi: 10.22060/ajmc.2024.23449.1257
MLA
Yahaya, S. , and Shehu Shagari, M. . "Multivalued interpolative type contractions on partial metric spaces", AUT Journal of Mathematics and Computing, , , 2024, -. doi: 10.22060/ajmc.2024.23449.1257
HARVARD
Yahaya, S., Shehu Shagari, M. (2024). 'Multivalued interpolative type contractions on partial metric spaces', AUT Journal of Mathematics and Computing, (), pp. -. doi: 10.22060/ajmc.2024.23449.1257
CHICAGO
S. Yahaya and M. Shehu Shagari, "Multivalued interpolative type contractions on partial metric spaces," AUT Journal of Mathematics and Computing, (2024): -, doi: 10.22060/ajmc.2024.23449.1257
VANCOUVER
Yahaya, S., Shehu Shagari, M. Multivalued interpolative type contractions on partial metric spaces. AUT Journal of Mathematics and Computing, 2024; (): -. doi: 10.22060/ajmc.2024.23449.1257