A subset $D$ of vertices of a simple graph $G$ is an exact double dominating set if each vertex $v$ of $G$ is dominated by exactly two vertices of $D$, i.e. $|N_G[v]\cap D|=2$, in which $N_G[v]$ is the closed neighborhood of $v$ in $G$. The generalized Sierpi'{n}ski graph $S(G,t)$ is a fractal-like graph that uses $G$ as a building block and can be constructed recursively in $t$ steps from the base graph $G$. In this paper we study and determine the existence of exact double dominating sets in generalized Sierpi'nski graphs $S(P_n,t)$, $S(C_n,t)$, $S(K_{1,n},t)$ and $S(K_n,t)$.
Behtoei, A. and Khatibi, M. (2024). Exact double domination in the generalized Sierpinski graphs. AUT Journal of Mathematics and Computing, (), -. doi: 10.22060/ajmc.2024.23345.1251
MLA
Behtoei, A. , and Khatibi, M. . "Exact double domination in the generalized Sierpinski graphs", AUT Journal of Mathematics and Computing, , , 2024, -. doi: 10.22060/ajmc.2024.23345.1251
HARVARD
Behtoei, A., Khatibi, M. (2024). 'Exact double domination in the generalized Sierpinski graphs', AUT Journal of Mathematics and Computing, (), pp. -. doi: 10.22060/ajmc.2024.23345.1251
CHICAGO
A. Behtoei and M. Khatibi, "Exact double domination in the generalized Sierpinski graphs," AUT Journal of Mathematics and Computing, (2024): -, doi: 10.22060/ajmc.2024.23345.1251
VANCOUVER
Behtoei, A., Khatibi, M. Exact double domination in the generalized Sierpinski graphs. AUT Journal of Mathematics and Computing, 2024; (): -. doi: 10.22060/ajmc.2024.23345.1251