[1] K. Adamidis, T. Dimitrakopoulou, and S. Loukas, On an extension of the exponential-geometric distri- bution, Statist. Probab. Lett., 73 (2005), pp. 259–269.
[2] K. Adamidis and S. Loukas, A lifetime distribution with decreasing failure rate, Statist. Probab. Lett., 39 (1998), pp. 35–42.
[3] G. Asha, J. K. K. M., and D. Kundu, An extension of the freund’s bivariate distribution to model load- sharing systems, American Journal of Mathematical and Management Sciences, 35 (2016), pp. 207–226.
[4] N. Balakrishnan and C.-D. Lai, Continuous bivariate distributions, Springer, Dordrecht, second ed., 2009.
[5] W. Barreto-Souza, A. L. de Morais, and G. M. Cordeiro, The Weibull-geometric distribution, J. Stat. Comput. Simul., 81 (2011), pp. 645–657.
[6] A. P. Basu, Bivariate failure rate, Journal of the American Statistical Association, 66 (1971), pp. 103–104.
[7] J. V. Deshpande, I. Dewan, and U. V. Naik-Nimbalkar, Two component load sharing systems with applications to Biology, tech. rep., Indian Statistical Institute, New Delhi, India, 2007. Available at https: //www.isid.ac.in/~statmath/eprints/2007/isid200706.pdf.
[8] F. Hemmati, E. Khorram, and S. Rezakhah, A new three-parameter ageing distribution, J. Statist. Plann. Inference, 141 (2011), pp. 2266–2275.
[9] N. L. Johnson and S. Kotz, A vector multivariate hazard rate, J. Multivariate Anal., 5 (1975), pp. 53–66.
[10] C. Kus¸, A new lifetime distribution, Comput. Statist. Data Anal., 51 (2007), pp. 4497–4509.
[11] D. Kundu, Bivariate geometric (maximum) generalized exponential distribution, Journal of Data Science, 13 (2015), pp. 693–712.
[12] D. Kundu and R. D. Gupta, Modified Sarhan-Balakrishnan singular bivariate distribution, J. Statist. Plann. Inference, 140 (2010), pp. 526–538.
[13] , Power-normal distribution, Statistics, 47 (2013), pp. 110–125.
[14] P. H. Kvam and E. A. Pe˜na, Estimating load-sharing properties in a dynamic reliability system, Journal of the American Statistical Association, 100 (2005), pp. 262–272.
[15] A. Mahdavi and D. Kundu, A new method for generating distributions with an application to exponential distribution, Comm. Statist. Theory Methods, 46 (2017), pp. 6543–6557.
[16] E. Mahmoudi and A. A. Jafari, Generalized exponential-power series distributions, Comput. Statist. Data Anal., 56 (2012), pp. 4047–4066.
[17] A. W. Marshall and I. Olkin, Life Distributions: Structure of Nonparametric, Semiparametric, and Para- metric Families, Springer New York, NY, 1 ed., 2007.
[18] V. Nekoukhou, A. Khalifeh, and H. Bidram, Univariate and bivariate extensions of the generalized exponential distributions, Math. Slovaca, 71 (2021), pp. 1581–1598.
[19] V. Nekoukhou, A. Khalifeh, and E. a. Mahmoudi, Bivariate rayleigh-geometric distribution, Journal of Statistical Sciences, 13 (2020).
[20] R. B. Nelsen, An introduction to copulas, Springer Series in Statistics, Springer, New York, second ed., 2006.
[21] P. S. Puri and H. Rubin, On a characterization of the family of distributions with constant multivariate failure rates, Ann. Probability, 2 (1974), pp. 738–740.
[22] R. B. Silva, M. Bourguignon, C. R. B. Dias, and G. M. Cordeiro, The compound class of extended Weibull power series distributions, Comput. Statist. Data Anal., 58 (2013), pp. 352–367