[1] S. Arpin, C. Camacho-Navarro, K. Lauter, J. Lim, K. Nelson, T. Scholl, and J. Sot´akov´a, Adventures in supersingularland, Exp. Math., 32 (2023), pp. 241–268.
[2] D. A. Buell, Binary Quadratic Forms: Classical Theory and Modern Computations, Springer New York, NY, 1 ed., 1989.
[3] J. P. Buhler and P. Stevenhagen, eds., Algorithmic number theory: lattices, number fields, curves and cryptography, vol. 44 of Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge, 2008.
[4] W. Castryck and T. Decru, An efficient key recovery attack on SIDH, in Advances in cryptology— EUROCRYPT 2023. Part V, vol. 14008 of Lecture Notes in Comput. Sci., Springer, Cham, 2023, pp. 423–447.
[5] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, CSIDH: an efficient post-quantum commutative group action, in Advances in cryptology—ASIACRYPT 2018. Part III, vol. 11274 of Lecture Notes in Comput. Sci., Springer, Cham, 2018, pp. 395–427.
[6] D. X. Charles, K. E. Lauter, and E. Z. Goren, Cryptographic hash functions from expander graphs, J. Cryptology, 22 (2009), pp. 93–113.
[7] H. Cohen, A course in computational algebraic number theory, vol. 138 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1993.
[8] D. A. Cox, Primes of the form x2 + ny2—Fermat, class field theory, and complex multiplication, AMS Chelsea Publishing, Providence, RI, 2022. Third edition [of 1028322] with solutions, With contributions by Roger Lipsett.
[9] L. De Feo, D. Jao, and J. Plˆut, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, J. Math. Cryptol., 8 (2014), pp. 209–247.
[10] L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski, SQISign: compact post-quantum signatures from quaternions and isogenies, in Advances in cryptology—ASIACRYPT 2020. Part I, vol. 12491 of Lecture Notes in Comput. Sci., Springer, Cham, [2020] ©2020, pp. 64–93.
[11] C. Delfs and S. D. Galbraith, Computing isogenies between supersingular elliptic curves over Fp, Des. Codes Cryptogr., 78 (2016), pp. 425–440.
[12] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenk¨orper, Abh. Math. Sem. Hansischen Univ., 14 (1941), pp. 197–272.
[13] S. D. Galbraith, Mathematics of public key cryptography, Cambridge University Press, Cambridge, 2012.
[14] T. Ibukiyama, On maximal orders of division quaternion algebras over the rational number field with certain optimal embeddings, Nagoya Math. J., 88 (1982), pp. 181–195.
[15] P. Longa, A note on post-quantum authenticated key exchange from supersingular isogenies. Cryptology ePrint Archive, Paper 2018/267, 2018.
[16] L. Luo, G. Xiao, and Y. Deng, On two problems about isogenies of elliptic curves over finite fields, Commun. Math. Res., 36 (2020), pp. 460–488.
[17] J. H. Silverman, The arithmetic of elliptic curves, vol. 106 of Graduate Texts in Mathematics, Springer New York, NY, 2nd ed., 2009.
[18] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math., 2 (1966), pp. 134–144.
[19] The Sage Developers, Sagemath, the sage mathematics software system (version 8:2).
http://www. sagemath.org, 2018.
[20] J. V´elu, Isog´enies entre courbes elliptiques, C. R. Acad. Sci. Paris S´er. A-B, 273 (1971), pp. A238–A241.
[21] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Chapman and Hall/CRC, 2nd ed., 2008.
[22] G. Xiao, Z. Zhou, Y. Deng, and L. Qu, Endomorphism rings of supersingular elliptic curves over Fp and binary quadratic forms, Adv. Math. Commun., 19 (2025), pp. 698–715.
[23] ´Elise Tasso, L. D. Feo, N. E. Mrabet, and S. Ponti´e, Resistance of isogeny-based cryptographic imple- mentations to a fault attack. Cryptology ePrint Archive, Paper 2021/850, 2021