[1] R. Abedian, A finite difference Hermite RBF-WENO scheme for hyperbolic conservation laws, Internat. J. Numer. Methods Fluids, 94 (2022), pp. 583–607.
[2] , A modified high-order symmetrical WENO scheme for hyperbolic conservation laws, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), pp. 1521–1538.
[3] R. Abedian and M. Dehghan, The formulation of finite difference RBFWENO schemes for hyperbolic conservation laws: an alternative technique, Adv. Appl. Math. Mech., 15 (2023), pp. 1023–1055.
[4] A. Bermudez and M. E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids, 23 (1994), pp. 1049–1071.
[5] V. Caleffi, A. Valiani, and A. Bernini, Fourth-order balanced source term treatment in central WENO schemes for shallow water equations, J. Comput. Phys., 218 (2006), pp. 228–245.
[6] P. Garcia-Navarro and M. E. Vazquez-Cend ´ on´ , On numerical treatment of the source terms in the shallow water equations, Comput. & Fluids, 29 (2000), pp. 951–979.
[7] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes. III, J. Comput. Phys., 71 (1987), pp. 231–303.
[8] A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I, SIAM J. Numer. Anal., 24 (1987), pp. 279–309.
[9] G.-S. Jiang, D. Levy, C.-T. Lin, S. Osher, and E. Tadmor, High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws, SIAM J. Numer. Anal., 35 (1998), pp. 2147– 2168.
[10] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), pp. 202–228.
[11] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), pp. 241–282.
[12] R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi[1]steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), pp. 346–365.
[13] X.-D. Liu and S. Osher, Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes. I, SIAM J. Numer. Anal., 33 (1996), pp. 760–779.
[14] X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), pp. 200–212.
[15] X.-D. Liu and E. Tadmor, Third order nonoscillatory central scheme for hyperbolic conservation laws, Numer. Math., 79 (1998), pp. 397–425.
[16] C. G. Mingham and D. M. Causon, High-resolution finite-volume method for shallow water flows, J. Hydraul. Res., 124 (1998), pp. 605–614.
[17] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Com[1]put. Phys., 87 (1990), pp. 408–463.
[18] A. A. I. Peer, A. Gopaul, M. Z. Dauhoo, and M. Bhuruth, A new fourth-order non-oscillatory central scheme for hyperbolic conservation laws, Appl. Numer. Math., 58 (2008), pp. 674–688.
[19] S. Rathan, N. R. Gande, and A. A. Bhise, Simple smoothness indicator WENO-Z scheme for hyperbolic conservation laws, Appl. Numer. Math., 157 (2020), pp. 255–275.
[20] S. Rathan and G. Naga Raju, A modified fifth-order WENO scheme for hyperbolic conservation laws, Comput. Math. Appl., 75 (2018), pp. 1531–1549.
[21] A. V. Valerio Caleffi and A. Zanni, Finite volume method for simulating extreme flood events in natural channels, J. Hydraul. Res., 41 (2003), pp. 167–177.
[22] M. E. Vazquez-Cend ´ on´ , Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. Comput. Phys., 148 (1999), pp. 497–526.
[23] S. Vukovic and L. Sopta, ENO and WENO schemes with the exact conservation property for onedimensional shallow water equations, J. Comput. Phys., 179 (2002), pp. 593–621.
[24] Y. Xing and C.-W. Shu, High order finite difference WENO schemes with the exact conservation property for the shallow water equations, J. Comput. Phys., 208 (2005), pp. 206–227.
[25] N. K. Yamaleev and M. H. Carpenter, A systematic methodology for constructing high-order energy stable WENO schemes, J. Comput. Phys., 228 (2009), pp. 4248–4272. [26] M. Zennaro, Natural continuous extensions of Runge-Kutta methods, Math. Comp., 46 (1986), pp. 119–133.
[27] Z. Zhao, Y. Chen, and J. Qiu, A hybrid Hermite WENO scheme for hyperbolic conservation laws, J. Comput. Phys., 405 (2020), pp. 109175, 22.
[28] Z. Zhao and J. Qiu, A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws, J. Comput. Phys., 417 (2020), pp. 109583, 23.
[29] J. G. Zhou, D. M. Causon, D. M. Ingram, and C. G. Mingham, Numerical solutions of the shallow water equations with discontinuous bed topography, Int. J. Numer. Methods Fluids, 38 (2002), pp. 769–788.