[1] R. Abedian, High-order semi-discrete central-upwind schemes with Lax-Wendroff-type time discretizations for Hamilton-Jacobi equations, Comput. Methods Appl. Math., 18 (2018), pp. 559–580.
[2] , A new high-order weighted essentially non-oscillatory scheme for non-linear degenerate parabolic equa[1]tions, Numer. Methods Partial Differential Equations, 37 (2021), pp. 1317–1343.
[3] , A finite difference Hermite RBF-WENO scheme for hyperbolic conservation laws, Internat. J. Numer.Methods Fluids, 94 (2022), pp. 583–607.
[4] , A modified high-order symmetrical WENO scheme for hyperbolic conservation laws, Int. J. Nonlinear Sci. Numer. Simul., 24 (2023), pp. 1521–1538.
[5] R. Abedian and M. Dehghan, The formulation of finite difference RBFWENO schemes for hyperbolic conservation laws: an alternative technique, Adv. Appl. Math. Mech., 15 (2023), pp. 1023–1055.
[6] E. Audusse, M.-O. Bristeau, and B. Perthame, Kinetic schemes for Saint-Venant equations with source terms on unstructured grids, Research Report RR-3989, INRIA, 2000. Projet M3N.
[7] A. Bermudez and M. E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids, 23 (1994), pp. 1049–1071.
[8] K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A., 68 (1971), pp. 1686–1688.
[9] T. Gallouet, J.-M. H ¨ erard, and N. Seguin ´ , Some approximate Godunov schemes to compute shallowwater equations with topography, Comput. & Fluids, 32 (2003), pp. 479–513.
[10] A. Kurganov and D. Levy, A third-order semidiscrete central scheme for conservation laws and convection[1]diffusion equations, SIAM J. Sci. Comput., 22 (2000), pp. 1461–1488.
[11] , Central-upwind schemes for the Saint-Venant system, M2AN Math. Model. Numer. Anal., 36 (2002), pp. 397–425.
[12] A. Kurganov, S. Noelle, and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton–jacobi equations, SIAM J. Sci. Comput., 23 (2001), pp. 707–740.
[13] A. Kurganov and G. Petrova, Central schemes and contact discontinuities, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 1259–1275.
[14] , A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems, Numer. Math., 88 (2001), pp. 683–729.
[15] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), pp. 241–282.
[16] R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasisteady wave-propagation algorithm, J. Comput. Phys., 146 (1998), pp. 346–365.
[17] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), pp. 408–463.
[18] S. Rathan, N. R. Gande, and A. A. Bhise, Simple smoothness indicator WENO-Z scheme for hyperbolic conservation laws, Appl. Numer. Math., 157 (2020), pp. 255–275.
[19] S. Rathan and G. Naga Raju, A modified fifth-order WENO scheme for hyperbolic conservation laws, Comput. Math. Appl., 75 (2018), pp. 1531–1549.
[20] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.
[21] S. Vukovic and L. Sopta, ENO and WENO schemes with the exact conservation property for one dimensional shallow water equations, J. Comput. Phys., 179 (2002), pp. 593–621.
[22] Z. Zhao, Y. Chen, and J. Qiu, A hybrid Hermite WENO scheme for hyperbolic conservation laws, J. Comput. Phys., 405 (2020), pp. 109175, 22.
[23] Z. Zhao and J. Qiu, A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws, J. Comput. Phys., 417 (2020), pp. 109583, 23.20