[1] H.-D. Cao, Geometry of Ricci solitons, Chinese Ann. Math. Ser. B, 27 (2006), pp. 121–142.
[2] M. Chaichi, E. Garc´ıa-R´ıo, and M. E. Vazquez-Abal ´ , Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A, 38 (2005), pp. 841–850.
[3] B.-Y. Chen and S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl., 19 (2014), pp. 13–21.
[4] B. Chow and D. Knopf, The Ricci flow: an introduction, vol. 110 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004.
[5] B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci flow, vol. 77 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006.
[6] A. Derdzinski, A Myers-type theorem and compact Ricci solitons, Proc. Amer. Math. Soc., 134 (2006), pp. 3645–3648.
[7] A. Derdzinski ´ , Ricci solitons, Wiad. Mat., 48 (2012), pp. 1–32.
[8] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 55(103) (2012), pp. 41–50.
[9] S. Deshmukh, H. Alodan, and H. Al-Sodais, A note on Ricci solitons, Balkan J. Geom. Appl., 16 (2011), pp. 48–55.
[10] M. Fernandez-L ´ opez and E. Garc ´ ´ıa-R´ıo, A remark on compact Ricci solitons, Math. Ann., 340 (2008), pp. 893–896.
[11] A. Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math., 645 (2010), pp. 125–153.
[12] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002. arXiv.
[13] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford Ser. (2), 1 (1950), pp. 69–79.