[1] T. T. Ashburn and K. B. Thor, Drug repositioning: identifying and developing new uses for existing drugs, Nature Reviews Drug Discovery, 3 (2004), pp. 673–683.
[2] A. S. Brown and C. J. Patel, A standard database for drug repositioning, Scientific Data, 4 (2017), p. 170029.
[3] H. Chen, Z. Zhang, and J. Zhang, In silico drug repositioning based on the integration of chemical, genomicand pharmacological spaces, BMC Bioinformatics, 22 (2021), p. 52.
[4] L. Cheng, Y. Hu, J. Sun, M. Zhou, and Q. Jiang, Dincrna: a comprehensive web-based bioinformaticstoolkit for exploring disease associations and ncrna function, Bioinformatics, 34 (2018), pp. 1953–1956.
[5] A. Chiang and A. Butte, Systematic evaluation of drug–disease relationships to identify leads for novel drug uses, Clinical Pharmacology & Therapeutics, 86 (2009), pp. 507–510.
[6] T. U. Consortium, Uniprot: the universal protein knowledgebase in 2021, Nucleic Acids Research, 49 (2020), pp. D480–D489.
[7] J. T. Dudley, T. Deshpande, and A. J. Butte, Exploiting drug–disease relationships for computationaldrug repositioning, Briefings in Bioinformatics, 12 (2011), pp. 303–311.
[8] C. Harrison, Coronavirus puts drug repurposing on the fast track, Nature biotechnology, 38 (2020), pp. 379– 381.
[9] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, and E. E. Bolton, Pubchem 2019 update: improved access to chemical data, Nucleic Acids Research, 47 (2018), pp. D1102–D1109.
[10] B. Krawczyk, Learning from imbalanced data: open challenges and future directions, Progress in ArtificialIntelligence, 5 (2016), pp. 221–232.
[11] M. Kuhn, I. Letunic, L. J. Jensen, and P. Bork, The sider database of drugs and side effects, Nucleic Acids Research, 44 (2015), pp. D1075–D1079.
[12] R. Kumar and A. Indrayan, Receiver operating characteristic (roc) curve for medical researchers, Indian Pediatrics, 48 (2011), pp. 277–287.
[13] H. Luo, J. Wang, M. Li, J. Luo, P. Ni, K. Zhao, F.-X. Wu, and Y. Pan, Computational drug repositioning with random walk on a heterogeneous network, IEEE/ACM Transactions on Computational Biologyand Bioinformatics, 16 (2019), pp. 1890–1900.
[14] M. Moridi, M. Ghadirinia, A. Sharifi-Zarchi, and F. Zare-Mirakabad, The assessment of efficient representation of drug features using deep learning for drug repositioning, BMC Bioinformatics, 20 (2019), p. 577.
[15] M. G. Ozsoy, T. Ozyer, F. Polat, and R. Alhajj ¨ , Realizing drug repositioning by adapting a recommendation system to handle the process, BMC Bioinformatics, 19 (2018), p. 136.
[16] H. R. Sofaer, J. A. Hoeting, and C. S. Jarnevich, The area under the precision-recall curve as aperformance metric for rare binary events, Methods in Ecology and Evolution, 10 (2019), pp. 565–577.
[17] D. Wang, J. Wang, M. Lu, F. Song, and Q. Cui, Inferring the human microrna functional similarity andfunctional network based on microrna-associated diseases, Bioinformatics, 26 (2010), pp. 1644–1650.
[18] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, and M. Wilson, Drugbank 5.0: a major update to the drugbank database for 2018, Nucleic Acids Research, 46 (2017), pp. D1074–D1082.
[19] O. J. Wouters, M. McKee, and J. Luyten, Estimated research and development investment needed tobring a new medicine to market, 2009-2018, JAMA, 323 (2020), pp. 844–853.
[20] P. Xuan, Y. Cao, T. Zhang, X. Wang, S. Pan, and T. Shen, Drug repositioning through integration ofprior knowledge and projections of drugs and diseases, Bioinformatics, 35 (2019), pp. 4108–4119.
[21] X. Zeng, S. Zhu, X. Liu, Y. Zhou, R. Nussinov, and F. Cheng, deepdr: a network-based deep learning approach to in silico drug repositioning, Bioinformatics, 35 (2019), pp. 5191–5198.