[1] E. Ackerman, O. Ben-Zwi, and G. Wolfovitz, Combinatorial model and bounds for target set selection,
Theoret. Comput. Sci., 411 (2010), pp. 4017–4022.
[2] R. C. Brigham, R. D. Dutton, T. W. Haynes, and S. T. Hedetniemi, Powerful alliances in graphs,
Discrete Math., 309 (2009), pp. 2140–2147.
[3] S. Brunetti, G. Cordasco, L. Gargano, E. Lodi, and W. Quattrociocchi, Minimum weight dynamo
and fast opinion spreading (extended abstract), in Graph-theoretic concepts in computer science, vol. 7551 of
Lecture Notes in Comput. Sci., Springer, Heidelberg, 2012, pp. 249–261.
[4] C. C. Centeno, M. C. Dourado, L. D. Penso, D. Rautenbach, and J. L. Szwarcfiter, Irreversible
conversion of graphs, Theoret. Comput. Sci., 412 (2011), pp. 3693–3700.
[5] M. C. Dourado, L. D. Penso, D. Rautenbach, and J. L. Szwarcfiter, Reversible iterative graph
processes, Theoret. Comput. Sci., 460 (2012), pp. 16–25.
[6] M. Fazli, On dynamic monopolies of cubic graphs, The CSI Journal on Computer Science and Engineering,
15 (2017), pp. 39–44.
[7] M. Fazli, M. Ghodsi, J. Habibi, P. Jalaly, V. Mirrokni, and S. Sadeghian, On non-progressive spread
of influence through social networks, Theoret. Comput. Sci., 550 (2014), pp. 36–50.
[8] P. Flocchini, R. Kralovi ´ c, P. Ru ˇ ˇzicka, A. Roncato, and N. Santoro ˇ , On time versus size for
monotone dynamic monopolies in regular topologies, vol. 1, 2003, pp. 129–150. SIROCCO 2000 (L’Aquila).
[9] P. Flocchini, E. Lodi, F. Luccio, L. Pagli, and N. Santoro, Dynamic monopolies in tori, vol. 137, 2004,
pp. 197–212. 1st International Workshop on Algorithms, Combinatorics, and Optimization in Interconnection
Networks (IWACOIN ’99).
[10] E. Goles and J. Olivos, Periodic behaviour of generalized threshold functions, Discrete Math., 30 (1980),
pp. 187–189.
[11] E. Goles and M. Tchuente, Iterative behaviour of generalized majority functions, Math. Social Sci., 4
(1983), pp. 197–204.
[12] A. Harutyunyan, Some bounds on global alliances in trees, Discrete Appl. Math., 161 (2013), pp. 1739–1746.
[13] L. M. Jazaeri, L. Sharifan, and A. Barzanouni, Periodic structure of repetitive polling game on graphs.
submitted.
[14] C. Jeger and A. N. Zehmakan, Dynamic monopolies in two-way bootstrap percolation, Discrete Appl.
Math., 262 (2019), pp. 116–126.
[15] K. Khoshkhah, H. Soltani, and M. Zaker, On dynamic monopolies of graphs: the average and strict
majority thresholds, Discrete Optim., 9 (2012), pp. 77–83.
[16] A. Mizrachi, Majority vote and monopolies in social networks, Master’s thesis, Ben-Gurion University of the
Negev, 2013.
[17] D. Peleg, Size bounds for dynamic monopolies, Discrete Appl. Math., 86 (1998), pp. 263–273.
[18] D. Peleg, Local majorities, coalitions and monopolies in graphs: a review, vol. 282, 2002, pp. 231–257. FUN
with algorithms (Elba, 1998).
[19] D. Reichman, New bounds for contagious sets, Discrete Math., 312 (2012), pp. 1812–1814.
[20] R. H. Schonmann, Finite size scaling behavior of a biased majority rule cellular automaton, Phys. A, 167
(1990), pp. 619–627.
[21] H. Soltani and M. Zaker, On dynamic monopolies of graphs with probabilistic thresholds, Bull. Aust. Math.
Soc., 90 (2014), pp. 363–375.
[22] A. N. Zehmakan, Tight bounds on the minimum size of a dynamic monopoly, in Language and automata
theory and applications, vol. 11417 of Lecture Notes in Comput. Sci., Springer, Cham, 2019, pp. 381–393.