Perfectness of the essential graph for modules over commutative rings

Document Type : Original Article

Authors

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

Abstract

Let R be a commutative ring and M be an R-module. The essential graph of M, denoted by EG(M) is a simple graph with vertex set Z(M) \ Ann(M) and two distinct vertices x, y ∈ Z(M) \ Ann(M) are adjacent if and only if AnnM(xy) is an essential submodule of M. In this paper, we investigate the dominating set, the clique and the chromatic number and the metric dimension of the essential graph for Noetherian modules. Let M be a Noetherian R-module such that |MinAssR(M)| = n ≥ 2 and let EG(M) be a connected graph. We prove that EG(M) is a weakly prefect, that is, ω(EG(M)) = χ(EG(M)). Furthermore, it is shown that dim(EG(M)) = |Z(M)| − (| Ann(M)| + 2n), whenever r(Ann(M)) ̸= Ann(M) and dim(EG(M)) = |Z(M)| − (| Ann(M)| + 2n − 2), whenever r(Ann(M)) = Ann(M)

Keywords

Main Subjects


[1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217
(1999), pp. 434–447.
[2] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), pp. 208–226.
[3] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann.
of Math. (2), 164 (2006), pp. 51–229.
[4] C. Godsil and G. Royle, Algebraic graph theory, vol. 207 of Graduate Texts in Mathematics, SpringerVerlag, New York, 2001.
[5] C. Hernando, M. Mora, I. M. Pelayo, C. Seara, and D. R. Wood, Extremal graph theory for metric
dimension and diameter, Electron. J. Combin., 17 (2010), pp. Research Paper 30, 28.
[6] C.-P. Lu, Unions of prime submodules, Houston J. Math., 23 (1997), pp. 203–213.
[7] M. J. Nikmehr, R. Nikandish, and M. Bakhtyiari, On the essential graph of a commutative ring, J.
Algebra Appl., 16 (2017), pp. 1750132, 14.
[8] K. Nozari and S. Payrovi, A generalization of the zero-divisor graph for modules, Publ. Inst. Math.
(Beograd) (N.S.), 106(120) (2019), pp. 39–46.
[9] R. Y. Sharp, Steps in commutative algebra, vol. 51 of London Mathematical Society Student Texts, Cambridge
University Press, Cambridge, second ed., 2000.
[10] F. Soheilnia, S. Payrovi, and A. Behtoei, A generalization of the essential graph for modules over
commutative rings, Int. Electron. J. Algebra, 29 (2021), pp. 211–222.