[1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217
(1999), pp. 434–447.
[2] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), pp. 208–226.
[3] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann.
of Math. (2), 164 (2006), pp. 51–229.
[4] C. Godsil and G. Royle, Algebraic graph theory, vol. 207 of Graduate Texts in Mathematics, SpringerVerlag, New York, 2001.
[5] C. Hernando, M. Mora, I. M. Pelayo, C. Seara, and D. R. Wood, Extremal graph theory for metric
dimension and diameter, Electron. J. Combin., 17 (2010), pp. Research Paper 30, 28.
[6] C.-P. Lu, Unions of prime submodules, Houston J. Math., 23 (1997), pp. 203–213.
[7] M. J. Nikmehr, R. Nikandish, and M. Bakhtyiari, On the essential graph of a commutative ring, J.
Algebra Appl., 16 (2017), pp. 1750132, 14.
[8] K. Nozari and S. Payrovi, A generalization of the zero-divisor graph for modules, Publ. Inst. Math.
(Beograd) (N.S.), 106(120) (2019), pp. 39–46.
[9] R. Y. Sharp, Steps in commutative algebra, vol. 51 of London Mathematical Society Student Texts, Cambridge
University Press, Cambridge, second ed., 2000.
[10] F. Soheilnia, S. Payrovi, and A. Behtoei, A generalization of the essential graph for modules over
commutative rings, Int. Electron. J. Algebra, 29 (2021), pp. 211–222.