[1] H. Andrew, S. Mark, C. Grace, C. Liang-Chieh, C. Bo, T. Mingxing, W. Weijun, Z. Yukun, P. Ruoming, V. Vijay, et al., Searching for mobilenetv3, in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 1314–1324.
[2] R. Azad, M. Heidari, M. Shariatnia, E. K. Aghdam, S. Karimijafarbigloo, E. Adeli, and D. Merhof, Transdeeplab: Convolution-free transformer-based deeplab v3+ for medical image segmentation, in International Workshop on PRedictive Intelligence In MEdicine, Springer, 2022, pp. 91–102.
[3] A. BabaAhmadi, S. Khalafi, and F. M. Esfahani, Designing an improved deep learning-based classifier for breast cancer identification in histopathology images, in 2022 International Conference on Machine Vision and Image Processing (MVIP), IEEE, 2022, pp. 1–4.
[4] A. BabaAhmadi, S. Khalafi, M. ShariatPanahi, and M. Ayati, Designing an improved deep learningbased model for covid-19 recognition in chest x-ray images: A knowledge distillation approach, arXiv preprint arXiv:2301.02735, (2023).
[5] B. Billot, D. Greve, K. Van Leemput, B. Fischl, J. E. Iglesias, and A. V. Dalca, A learning strategy for contrast-agnostic mri segmentation, arXiv preprint arXiv:2003.01995, (2020).
[6] M. Buda, E. A. AlBadawy, A. Saha, and M. A. Mazurowski, Deep radiogenomics of lower-grade gliomas: Convolutional neural networks predict tumor genomic subtypes using mr images, Radiology: Artificial Intelligence, 2 (2020), p. e180050.
[7] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 801–818.
[8] R. Hua, Q. Huo, Y. Gao, H. Sui, B. Zhang, Y. Sun, Z. Mo, and F. Shi, Segmenting brain tumor using cascaded v-nets in multimodal mr images, Frontiers in Computational Neuroscience, 14 (2020), p. 9.
[9] C. Huang and M. Wan, Automated segmentation of brain tumor based on improved u-net with residual units, Multimedia Tools and Applications, 81 (2022), pp. 12543–12566.
[10] V. Iglovikov and A. Shvets, Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation, arXiv preprint arXiv:1801.05746, (2018).
[11] S. Lefkovits, L. Lefkovits, and L. Szilagyi ´ , Hgg and lgg brain tumor segmentation in multi-modal mri using pretrained convolutional neural networks of amazon sagemaker, Applied Sciences, 12 (2022), p. 3620.
[12] X. Li, X. Fang, G. Yang, S. Su, L. Zhu, and Z. Yu, Transu²-net: An effective medical image segmentation framework based on transformer and u²-net, IEEE Journal of Translational Engineering in Health and Medicine, 11 (2023), pp. 441–450.
[13] S. Mishra and M. Manish, Studies on computational grafting of malarial epitopes in serum albumin, Computers in Biology and Medicine, 102 (2018), pp. 126–131.
[14] H. Mzoughi, I. Njeh, A. Wali, M. B. Slima, A. BenHamida, C. Mhiri, and K. B. Mahfoudhe, Deep multi-scale 3d convolutional neural network (cnn) for mri gliomas brain tumor classification, Journal of Digital Imaging, 33 (2020), pp. 903–915.
[15] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, Springer, 2015, pp. 234–241.
[16] H. Saleem, A. R. Shahid, and B. Raza, Visual interpretability in 3d brain tumor segmentation network, Computers in Biology and Medicine, 133 (2021), p. 104410.
[17] M. Tan and Q. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, in International conference on machine learning, PMLR, 2019, pp. 6105–6114.
[18] S. Vidyadharan, B. V. V. S. N. Prabhakar Rao, Y. Perumal, K. Chandrasekharan, and V. Rajagopalan, Deep learning classifies low-and high-grade glioma patients with high accuracy, sensitivity, and specificity based on their brain white matter networks derived from diffusion tensor imaging, Diagnostics, 12 (2022), p. 3216.
[19] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, Segformer: Simple and efficient design for semantic segmentation with transformers, Advances in Neural Information Processing Systems, 34 (2021), pp. 12077–12090.
[20] D. Xu, X. Zhou, X. Niu, and J. Wang, Automatic segmentation of low-grade glioma in mri image based on unet++ model, 1693 (2020), p. 012135.
[21] J. Zhang, Y. Liu, Q. Wu, Y. Wang, Y. Liu, X. Xu, and B. Song, Swtru: Star-shaped window transformer reinforced u-net for medical image segmentation, Computers in Biology and Medicine, 150 (2022), p. 105954.