[1] M. Bevilacqua, C. Caamano-Carrillo, R. B. Arellano-Valle, and V. Morales-O ˜ nate ˜ , NonGaussian Geostatistical Modeling Using (Skew) t Processes, Scandinavian Journal of Statistics, 48 (2021), pp. 212–245.
[2] P. Bocchini and G. Deodatis, Critical Review and Latest Developments of a Class of Simulation Algorithms for Strongly Non-Gaussian Random Fields, Probabilistic Engineering Mechanics, 23 (2008), pp. 393–407.
[3] G. Boffetta, A. Mazzino, and A. Vulpiani, Twenty-Five Years of Multifractals in Fully Developed Turbulence: A Tribute to Giovanni Paladin, Journal of Physics A: Mathematical and Theoretical, 41 (2008), p. 363001.
[4] A. Brouste, J. Istas, and S. Lambert-Lacroix, On Fractional Gaussian Random Fields Simulations, Journal of Statistical Software, 23 (2008), pp. 1–23.
[5] G. Casella and R. L. Berger, Statistical Inference, Thomson Learning, 2001.
[6] N. Cressie, Statistics for Spatial Data, John Wiley & Sons, 2015.
[7] V. Ganti, A. Singh, P. Passalacqua, and E. Foufoula-Georgiou, Subordinated Brownian Motion Model for Sediment Transport, Physical Review E, 80: 011111 (2009).
[8] B. Graler ¨ , Modelling Skewed Spatial Random Fields Through the Spatial Vine Copula, Spatial Statistics, 10 (2014), pp. 87–102.
[9] M. Grigoriu, Simulation of Stationary Process via a Sampling Theorem, Journal of sound and vibration, 166 (1993), pp. 301–313.
[10] M. Grigoriu, Applied Non-Gaussian Processes: Examples, Theory, Simulation, Linear Random Vibration, and MATLAB Solutions, PTR Prentice Hall, 1995.
[11] A. Guadagnini, S. P. Neuman, T. Nan, M. Riva, and C. L. Winter, Scalable Statistics of Correlated Random Variables and Extremes Applied to Deep Borehole Porosities, Hydrology and Earth System Sciences, 19 (2015), pp. 729–745.
[12] A. Guadagnini, M. Riva, and S. P. Neuman, Recent Advances in Scalable Non-Gaussian Geostatistics: The Generalized Sub-Gaussian Model, Journal of hydrology, 562 (2018), pp. 685–691.
[13] K. Kamo, Y. Kubo, N. Takamune, D. Kitamura, H. Saruwatari, Y. Takahashi, and K. Kondo, Joint-Diagonalizability-Constrained Multichannel Nonnegative Matrix Factorization Based on Multivariate Complex Sub-Gaussian Distribution, 28th European Signal Processing Conference (EUSIPCO), (2021), pp. 890–894.
[14] D. Kolyukhin and A. Minakov, Simulation of Gaussian Random Field in a Ball, Monte Carlo Methods and Applications, 28 (2022), pp. 85–95.
[15] A. Lang and J. Potthoff, Fast Simulation of Gaussian Random Fields, Monte Carlo Methods and Applications, 17 (2011), pp. 195–214.
[16] A. Lang and C. Schwab, Isotropic Gaussian Random Fields on the Sphere: Regularity, Fast Simulation and Stochastic Partial Differential Equations, The Annals of Applied Probability, 25 (2015), pp. 3047–3094.
[17] C. Lantuejoul, X. Freulon, and D. Renard ´ , Spectral Simulation of Isotropic Gaussian Random Fields on a Sphere, Mathematical Geosciences, 51 (2019), pp. 999–1020.
[18] K. Li, J. Wu, T. Nan, X. Zeng, L. Yin, and J. Zhang, Analysis of Heterogeneity in a Sedimentary Aquifer Using Generalized Sub-Gaussian Model Based on Logging Resistivity, Stochastic Environmental Research and Risk Assessment, (2022), pp. 1–17.
[19] B. Mahmoudian, A Skewed and Heavy-Tailed Latent Random Field Model for Spatial Extremes, Journal of Computational and Graphical Statistics, 26 (2017), pp. 658–670.
[20] M. M. Meerschaert, T. J. Kozubowski, F. J. Molz, and S. Lu, Fractional Laplace Model for Hydraulic Conductivity, Geophysical Research Letters, 31 (2004).
[21] S. Montoya-Noguera, T. Zhao, Y. Hu, Y. Wang, and K.-K. Phoon, Simulation of Non-Stationary Non-Gaussian Random Fields From Sparse Measurements Using Bayesian Compressive Sampling and Karhunen-Lo`eve Expansion, Structural Safety, 79 (2019), pp. 66–79.
[22] G. R. Naik and W. Wang, Audio Analysis of Statistically Instantaneous Signals With Mixed Gaussian Probability Distributions, International Journal of Electronics, 99 (2012), pp. 1333–1350.
[23] J. P. Nolan, Univariate Stable Distributions, Springer, 2020.
[24] V. A. Ogorodnikov and S. M. Prigarin, Numerical Modelling of Random Processes and Fields: Algorithms and Applications, Vsp, 1996.
[25] B. Ripley, B. Venables, D. M. Bates, K. Hornik, A. Gebhardt, and D. Firth, MASS: Support Functions and Datasets for Venables and Ripley’s MASS, (2022). R Package Version 7.3-58.1.
[26] , New Scaling Model for Variables and Increments with Heavy-Tailed Distributions, Water Resources Research, 51 (2015), pp. 4623–4634.
[27] M. Riva, S. P. Neuman, and A. Guadagnini, Sub-Gaussian Model of Processes with Heavy-Tailed Distributions Applied to Air Permeabilities of Fractured Tuff, Stochastic Environmental Research and Risk Assessment, 27 (2013), pp. 195–207.
[28] M. Riva, M. Panzeri, A. Guadagnini, and S. P. Neuman, Simulation and Analysis of Scalable NonGaussian Statistically Anisotropic Random Functions, Journal of Hydrology, 531 (2015), pp. 88–95.
[29] S. Sakamoto and R. Ghanem, Simulation of Multi-Dimensional Non-Gaussian Non-Stationary Random Fields, Probabilistic Engineering Mechanics, 17 (2002), pp. 167–176.
[30] M. Siena, A. Guadagnini, A. Bouissonnie, P. Ackerer, D. Daval, and M. Riva ´ , Generalized SubGaussian Processes: Theory and Application to Hydrogeological and Geochemical Data, Water Resources Research, 56 (2020), p. e2020WR027436.
[31] E. Spodarev, E. Shmileva, and S. Roth, Extrapolation of Stationary Random Fields, in Stochastic Ge[1]ometry, Spatial Statistics and Random Fields, Springer, 2015, pp. 321–368.
[32] M. L. Stein, Simulation of Gaussian Random Fields With One Derivative, Journal of Computational and Graphical Statistics, 21 (2012), pp. 155–173.
[33] B. Swihart, J. Lindsey, and P. Lambert, stable: Probability Functions and Generalized Regression Models for Stable Distributions, (2022). R Package Version 1.1.6.
[34] R. Vio, P. Andreani, and W. Wamsteker, Numerical Simulation of Non-Gaussian Random Fields with Prescribed Correlation Structure, Publications of the Astronomical Society of the Pacific, 113 (2001), p. 1009.
[35] G. Xu and M. G. Genton, Tukey g-and-h Random Fields, Journal of the American Statistical Association, 112 (2017), pp. 1236–1249.