Bergman and Dirichlet spaces in the unit ball and symmetric lifting operator

Document Type : Original Article


1 Engineering Faculty of Khoy, Urmia University of Technology, Urmia, Iran

2 Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran


Let $\mathbb{B}_n$ be the open unit ball in $\mathbb{C}^n$ and $\mathbb{B}_n^2 = \mathbb{B}_n \times \mathbb{B}_n$. The symmetric lifting operator which lifts analytic functions from $H(\mathbb{B}_n)$ to $H(\mathbb{B}_n^2)$ is defined as follow
L(f)(z,w) = \frac{f(z) - f(w)}{z-w}.
In this paper we investigate the action of symmetric lifting operator on the Bergman space in the unit ball. Also, we state a characterization for Dirichlet space and consider symmetric lifting operator on the Dirichlet space in the unit ball.


Main Subjects

[1] P. Duren and A. Schuster, Bergman spaces, vol. 100 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004.
[2] M. Hassanlou and M. Sohrabi, Characterization of Bloch type spaces and symmetric lifting operator, International Journal of Nonlinear Analysis and Applications, (2022).
[3] M. Hassanlou and H. Vaezi, Double integral characterization for Bergman spaces, Iran. J. Math. Sci. Inform., 11 (2016), pp. 27–34, 148.
[4] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, vol. 199 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.
[5] S. Li, H. Wulan, R. Zhao, and K. Zhu, A characterisation of Bergman spaces on the unit ball of C n, Glasg. Math. J., 51 (2009), pp. 315–330.
[6] S. Li, H. Wulan, and K. Zhu, A characterization of Bergman spaces on the unit ball of C n. II, Canad. Math. Bull., 55 (2012), pp. 146–152.
[7] M. Stessin and K. Zhu, Composition operators on embedded disks, J. Operator Theory, 56 (2006), pp. 423–449.
[8] H. Wulan and K. Zhu, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull., 52 (2009), pp. 613–626.
[9] K. Zhu, Spaces of holomorphic functions in the unit ball, vol. 226 of Graduate Texts in Mathematics, Springer[1]Verlag, New York, 2005.