[1] E. L. Allgower and K. Georg, Introduction to numerical continuation methods, vol. 45 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003. Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)].
[2] R. L. Burden, J. D. Faires, and A. C. Reynolds, Numerical analysis, Cengage learning, 10 ed., 2016.
[3] K. I. Dickson, C. T. Kelley, I. C. F. Ipsen, and I. G. Kevrekidis, Condition estimates for pseudo[1]arclength continuation, SIAM J. Numer. Anal., 45 (2007), pp. 263–276.
[4] C. T. Kelley, Solving nonlinear equations with Newton’s method, vol. 1 of Fundamentals of Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.
[5] C.-Y. Ku and Y.-H. Tsai, Solving nonlinear problems with singular initial conditions using a perturbed scalar homotopy method, Int. J. Nonlinear Sci. Numer. Simul., 14 (2013), pp. 367–375.
[6] M. A. Mehrpouya and S. Fallahi, A modified control parametrization method for the numerical solution of bang-bang optimal control problems, J. Vib. Control, 21 (2015), pp. 2407–2415.
[7] M. A. Mehrpouya and M. Khaksar-e Oshagh, An efficient numerical solution for time switching optimal control problems, Comput. Methods Differ. Equ., 9 (2021), pp. 225–243.
[8] M. A. Mehrpouya and M. Shamsi, Gauss pseudospectral and continuation methods for solving two-point boundary value problems in optimal control theory, Appl. Math. Model., 39 (2015), pp. 5047–5057.
[9] M. A. Mehrpouya, M. Shamsi, and V. Azhmyakov, An efficient solution of Hamiltonian boundary value problems by combined Gauss pseudospectral method with differential continuation approach, J. Franklin Inst., 351 (2014), pp. 4765–4785.
[10] W. C. Rheinboldt, Numerical continuation methods: a perspective, vol. 124, 2000, pp. 229–244. Numerical analysis 2000, Vol. IV, Optimization and nonlinear equations.