[1] T. Aikou, Averaged Riemannian metrics and connections with application to locally conformal Berwald mani[1]folds, Publ. Math. Debrecen, 81(1-2) (2012), 179-198.
[2] V. Balan and N. Brinzei, Einstein equations for (h, v)-Bervald-Mo´or relativistic models, Balcan J. Geom. Appl. 11 (2006), 20-27.
[3] V. Balan, Spectra of symmetric tensors and m-root Finsler models, Linear Algebra and its Applications, 436(1) (2012), 152-162
[4] D. Bao, On two curvature-driven problems in Riemann-Finsler geometry, Advanced Studies in Pure Mathemat[1]ics, 48 (2007), 19-71.
[5] N. Bartelmeß and V. Matveev, Monochromatic metrics are generalized Berwald, J. Diff. Geom. Appl. 58 (2018), 264-271.
[6] S. B´acs´o, M. Hashiguchi and M. Matsumoto, Generalized Berwald spaces and Wagner spaces, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.) 43 (1997), 307-321.
[7] F. Belgun, A. Moroianu, and U. Semmelmann, Symmetries of contact metric manifolds, Geom. Dedic. 101(1) (2003), 203-216.
[8] L. Berwald, Uber zweidimensionale allgemeine metrische R¨aume, J. reine angew. Math. 156 (1927), 191-210 and ¨ 211-222.
[9] L. Berwald, On Finsler and Cartan Geometries III, Two-dimensional Finsler spaces with rectilinear extremals, Ann. of Math. 42 (1941), 84-112.
[10] V. N. Berestovskii and Yu. G. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Siberian Mathematical Journal, 49(3) (2008), 395-407.
[11] D. Blair, Contact manifolds in Riemannian geometry, Springer Lectures Notes in Math., V. 509, Springer Verlag, Berlin and New York, 1976.
[12] C. Boyer and K. Galicki, On Sasakian-Einstein geometry, Internat. J. Math. 11(7) (2000), 873-909.
[13] N. Brinzei, Projective relations for m-th root metric spaces, arXiv:0711.4781v2 (2008).
[14] L. S. Charlap, Bieberbach groups and flat manifolds, Springer 1986.
[15] M. Crampin, On the inverse problem for sprays, Publ. Math. Debrecen 70(3-4) 2007, 319-335.
[16] M. Crampin, On the construction of Riemannian metrics for Berwald spaces by averaging, Houston J. Math. 40(3) (2014), 737-750.
[17] M. Hashiguchi, On Wagner’s generalized Berwald space, J. Korean Math. Soc. 12(1) (1975), 51-61.
[18] M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ. 16 (1976), 25-50.
[19] M. Hashiguchi and Y. Ichijy¯o, On conformal transformations of Wagner spaces, Rep. Fac. Sci. Kagoshima Univ. (Math., Phys., Chem.) 10 (1977), 19-25.
[20] S. Kikuchi, On the condition that a Finsler space be conformally flat, Tensor (N. S.) 55 (1994), 97-100.
[21] M. Matsumoto and K. Okubo, Theory of Finsler spaces with m-th root metric, Tensor (N. S.) 56 (1995), 9-104 .
[22] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler spaces, Kaisheisa Press, Otsu (1986).
[23] M. Matsumoto, Conformally Berwald and conformally flat Finsler spaces, Publ. Math. Debrecen, 58(1-2) (2001), 275-285.
[24] V. S. Matveev, H-B. Rademacher, M. Troyanov and A. Zeghib, Finsler Conformal Lichnerovitz-Obata Conjec[1]ture, Ann. Inst. Fourier, Grenoble 59(3) (2009), 937-949.
[25] V. S. Matveev and M. Troyanov, The Binet-Legendre metric in Finsler geometry, Geometry and Topology 16 (2012), 2135-2170.
[26] V. S. Matveev and M. Troyanov, Completeness and incompleteness of the Binet-Legendre metric, European Journal of Mathematics, 1(3) (2015), 483-502.
[27] H. Shimada, On Finsler spaces with the metric L = mp ai1...imy i1 · . . . · y im, Tensor (N.S.) 33 (1979), 365-372.
[28] Z. I. Szab´o, Positive definite Berwald spaces. Structure theorems on Berwald spaces, Tensor (N. S.) 35(1) (1981), 25-39.
[29] L. Tam´assy, Finsler Spaces with Polynomial Metric, Hypercomplex Numbers in Geometry and Physics, 2(6) Vol. 3 (2006), 85-92.
[30] A. Tayebi and B. Najafi, On m-th root metrics, J. Geom. Phys. 61 (2011),1479-1484.
[31] A. Tayebi and M. Barzegari, Generalized Berwald manifolds with (α, β)-metrics, Indagationes Mathematicae, 27(3) (2016), 670-683.
[32] R. G. Torrom´e, A Riemannian structure associated with a Finsler structure, manuscript, 2005. arXiv:math/0501058.
[33] Cs. Vincze, An intrinsic version of Hashiguchi-Ichijy¯o’s theorems for Wagner manifolds, SUT J. Math. 35(2) (1999), 263-270.
[34] Cs. Vincze, On Wagner connections and Wagner manifolds, Acta Math. Hung. 89(1-2) (2000), 111-133.
[35] Cs. Vincze, On conformal equivalence of Berwald manifolds all of whose indicatrices have positive curvature, SUT J. Math. 39 (1) (2003), 15-40.
[36] Cs. Vincze, A new proof of Szab´o’s theorem on the Riemann-metrizability of Berwald manifolds, Acta Math. Acad. Paedagog. Nyh´azi 21 (2005), 199-204.
[37] Cs. Vincze, On a scale function for testing the conformality of Finsler manifolds to a Berwald manifold, Journal of Geometry and Physics, 54 (2005), 454-475.
[38] Cs. Vincze, On geometric vector fields of Minkowski spaces and their applications, J. Diff. Geom. and Its Appl. 24 (2006), 1-20.
[39] Cs. Vincze, On an existence theorem of Wagner manifolds, Indagationes Mathematicae, 17(1) (2006), 129-145.
[40] Cs. Vincze, On Berwald and Wagner manifolds, Acta Math. Acad. Paedagog. Nyh´azi, 24 (2008), 169-178.
[41] Cs. Vincze and A. Nagy, An introduction to the theory of generalized conics and their applications, Journal ´ of Geom. and Phys. 61 (2011), 815-828.
[42] Cs. Vincze, On generalized conics’ theory and averaged Riemannian metrics in Finsler geometry, In: Proceeding of the 47th Symposium on Finsler Geometry, Kagoshima (2012), 62-70.
[43] Cs. Vincze, Generalized Berwald manifolds with semi-symmetric compatible linear connections, Publ. Math. Debrecen, 83 (4) (2013) 741-755.
[44] Cs. Vincze, On generalized conics’ theory and averaged Riemannian metrics in Finsler geometry, Tensor (N. S.) 74 (1) (2013), 101-116.
[45] Cs. Vincze, On Randers manifolds with semi-symmetric compatible linear connections, Indagationes Mathe[1]maticae, 26(2), 2014,363-379.
[46] Cs. Vincze, Average methods and their applications in differential geometry I, Journal of Geom. and Physics, 92 (2015), 194-209, arXiv:1309.0827.
[47] Cs. Vincze, A short review on averaging processes in Finsler geometry, Acta Math. Acad. Paedagog. Nyh´azi 31(1) (2015), 171-185,
www.emis.de/journals.
[48] Cs. Vincze, On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors, Finsler geometry, new methods and perspectives, European J. of Math. 3(4), 1098-1171.
[49] Cs. Vincze, On Asanov’s Finsleroid-Finsler metrics as the solutions of a conformal rigidity problem, J. of Diff. Geom. and Its Appl. 53 (2017), 148-168. arXiv:1601.08177.
[50] Cs. Vincze, Lazy orbits: an optimization problem on the sphere, J. of Geom. and Phys. 124 (2018), 180-198. arXiv:1709.06410.
[51] Cs. Vincze, Analytic properties and the asymptotic behavior of the area function of a Funk metric, Houston J. of Math. 44(2) (2018), 495-520. arXive:1602.06565.
[52] Cs. Vincze, An observation on Asanov’s Unicorn metrics, Publ. Math. Debrecen, 90(1-2) (2017), 251-268. arXiv:1605.04407.
[53] Cs. Vincze, T. Khoshdani and M. Ol´ah, On generalized Berwald surfaces with locally symmetric fourth root metrics, Balkan Journal of Geometry and Its Appl., Vol. 24(2) (2019), 63-78. arXiv:1808.10855.
[54] Cs. Vincze, T. Khoshdani, S. Mehdi Zadeh and M. Ol´ah, On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach, Communications in Math., Vol. 27(1) (2019), pp. 51-68. arXiv version: On compatible linear connections of two-dimensional generalized Berwald manifolds, arXiv:1808.02644.
[55] Cs. Vincze, On the extremal compatible linear connection of a generalized Berwald manifold, submitted to Aequat. Math. arXiv:1909.03096.
[56] Cs. Vincze and M. Ol´ah, On the extremal compatible linear connection of a Randers space, J. Geom. 111(19) (2020). https://doi.org/10.1007/s00022-020-00532-9, arXiv:2001.04389.
[57] Cs. Vincze, M. Ol´ah and L. Muhsin, On the divergence representation of the Gauss curvature of Riemannian surfaces and its applications, Rend. Circ. Mat. Palermo, II. Ser 69 (2020), 1-13. https://doi.org/10.1007/s12215- 018-0382-6.
[58] Cs. Vincze, On compatible linear connections with totally anti-symmetric torsion tensor of three-dimensional generalized Berwald manifolds, Contributions to Algebra and Geometry 61(1) (2020), 117-128. arXiv:1903.06665.
[59] Cs. Vincze an M. Ol´ah, On generalized Berwald manifolds of dimension three, accepted for publication in Publ. Math. Debrecen.
[60] V. Wagner, On generalized Berwald spaces, CR Dokl. Acad. Sci. USSR (N.S.) 39 (1943), 3-5.