Navigation problem and conformal vector fields

Document Type : Original Article

Author

Department of Mathematics, School of Sciences Hangzhou Dianzi University Hangzhou, Zhejiang Province, 310028, P.R.China

Abstract

The navigation technique is very effective to obtain or classify a Finsler metric from a given a Finsler metric (especially a Riemannian metric) under an action of a vector field on a differential manifold. In this survey, we will survey some recent progress on the navigation problem and conformal vector fields on Finsler manifolds, and their applications in the classifications of some Finsler metrics of scalar (resp. constant) flag curvature. 

Keywords

Main Subjects


[1] P. L. Antonelli, Handbook of Finsler geometry, Academic Publishers, 2003.
[2] D. Bao and C. Robles, Ricci and Flag Curvatures in Finsler geometry, In: A Sampler of Finsler Geometry, Cambridge, Cambridge University Press, 2004, 197-259.
[3] D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Diff. Geom. 66 (2004), 377-435.
[4] X. Cheng and Z. Shen, Randers metrics of scalar flag curvature, J. Aust. Math. Soc. 87 (2009), 359-370.
[5] X. Cheng, T. Li and L. Yin, The conformal vector fields on conic Kropina manifolds via navigation data, J. Geom. Phys. 131 (2018), 138-146.
[6] C. Chen and X. Mo, On conformal fields of a class of orthogonally invariant Finsler Metrics, Results Math. 72 (2017), 2253-2270.
[7] X. Cheng, X. Mo and Z. Shen, On the flag curvature of Finsler metrics, J. London Math. Soc. 68(2) (2003), 762-780.
[8] S. S. Chern and Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, Vol.6, World Scientific Publisher, Singapore, 2005.
[9] X. Cheng, L. Yin and T. Li, The conformal vector fields on Kropina manifolds, Diff. Geom. Appl. 56 (2018), 344-354.
[10] P. Foulon and V. S. Matveev, Zermelo deformation of Finsler metrics by Killing vector fields, Electron. Res. Announc. Math. Sci. 25(2018), 1-7.
[11] L. Huang, H. Liu and X. Mo, On the landsberg curvature of a class of Finsler metrics generated from the navigation problem, Pacific J. Math. 302(1) (2019), 77-96.
[12] L. Huang and X. Mo, On conformal fields of a Randers metric with isotropic S-curvature, Ill. J. Math. 57 (2013), 685-696.
[13] L. Huang and X. Mo, On geodesics of Finsler metrics via navigation problem, Proc. Amer. Math. Soc. 139(8) (2011), 3015-3024.
[14] L. Huang and X. Mo, On the flag curvature of a class of Finsler metrics produced by the navigation problem, Pacific J. Math. 277(1) (2015), 149-168.
[15] L. Kang, On conformal fields of (α, β)-spaces, preprint, 2011 (unpublished).
[16] H. Liu and X. Mo, The explicite construction of all dually flat Randers metrics, Internt. J. Math. 28 (2017), 1750058, 12pp.
[17] X. Mo and L. Hang, On curvature decreasing property of a class of navigation problems, Publ. Math. Debrecen, 71(1-2) (2007), 141-163.
[18] C. Robles, Geodesics in Randers spaces of constant curvature, Trans. Ams. Math. Soc. 359(4) (2007), 1633- 1651.
[19] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128 (1997), 306- 328.
[20] Z. Shen, Finsler metrics with K = 0 and S = 0 , Canad. J. Math. 55(1) (2003), 112-132.
[21] Z. Shen, Landsberg curvature, S-curvature and Riemann curvature, In “A Simpler of Finsler Geometry” MSRI series, Cambridge University Press, 2004.
[22] Y. Shen and Z.Shen, Introduction to modern Finsler geometry, Higher Education Press, Beijing, 2016.
[23] Z. Shen and Q. Xia, On conformal vector fields on Randers manifolds, Sci. China Math. 55(9) (2012), 1869-1882.
[24] Z. Shen and Q. Xia, A class of Randers metrics of scalar flag curvature, Internat. J. Math. 24(7) (2013), 146-155.
[25] Z. Shen and H. Xing, On Randers metrics with isotropic S-curvature, Acta Math. Sinica, English Series, 24(5) (2008), 789-796.
[26] Z. Shen and G. C. Yildirim, A Characterization of Randers Metrics of Scalar Flag Curvature, in Surveys in Geometric Analysis and Relativity, Advanced Lectures in Mathematics, Vol. 23 (International Press, 2012), 345-358.
[27] Z. Shen and M. Yuan, Conformal vector fields on some Finsler manifolds, Sci. China Math. 59(1) (2016), 107-114.
[28] Q. Xia, On the flag curvature of a class of Randers metric generated from the navigation problem, J. Math. Anal. Appl. 397 (2013), 415-427.
[29] Q. Xia, On Kropina metrics of scalar flag curvature, Differential Geom. Appl. 31 (2013), 393-404.
[30] Q. Xia, Conformal vector fields on Finsler manifolds, Internat. J. Math. 31(12) (2020), 2050095, 13pp.
[31] H. Xing, The geometic meaning of Randers Metrics with Isotropic S-curvature, Adv. Math.(China), 34(6) (2005), 717-730.
[32] R. Yoshikawa and K. Okubo, Kropina spaces of constant curvature, Tensor, N. S. 68 (2007), 190-203.
[33] R. Yoshikawa and K. Okubo, Kropina spaces of constant curvature II, Balkan J. Geom. Appl. 17 (2012), 115-124.
[34] C. Yu, On dually flat Randers metrics, Nonlinear Anal. 95 (2014), 146-155.
[35] C. Yu and H. Zhu, On a new class of Finsler metrics, Diff. Geom. Appl. 29 (2011), 244-254.
[36] E. Zermelo, Uber das Navigaionsproblem bei ruhender oder ver¨anderlicher Windverteilung, Z. Angew. Math. ¨ Mech. 11(2) (1931), 114-124.
[37] X. Zhang and Y. Shen, On Einstein Kropina metrics, Diff. Geom. Appl. 31 (2013), 80-92.