[1] P. L. Antonelli, Handbook of Finsler geometry, Academic Publishers, 2003.
[2] D. Bao and C. Robles, Ricci and Flag Curvatures in Finsler geometry, In: A Sampler of Finsler Geometry, Cambridge, Cambridge University Press, 2004, 197-259.
[3] D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Diff. Geom. 66 (2004), 377-435.
[4] X. Cheng and Z. Shen, Randers metrics of scalar flag curvature, J. Aust. Math. Soc. 87 (2009), 359-370.
[5] X. Cheng, T. Li and L. Yin, The conformal vector fields on conic Kropina manifolds via navigation data, J. Geom. Phys. 131 (2018), 138-146.
[6] C. Chen and X. Mo, On conformal fields of a class of orthogonally invariant Finsler Metrics, Results Math. 72 (2017), 2253-2270.
[7] X. Cheng, X. Mo and Z. Shen, On the flag curvature of Finsler metrics, J. London Math. Soc. 68(2) (2003), 762-780.
[8] S. S. Chern and Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, Vol.6, World Scientific Publisher, Singapore, 2005.
[9] X. Cheng, L. Yin and T. Li, The conformal vector fields on Kropina manifolds, Diff. Geom. Appl. 56 (2018), 344-354.
[10] P. Foulon and V. S. Matveev, Zermelo deformation of Finsler metrics by Killing vector fields, Electron. Res. Announc. Math. Sci. 25(2018), 1-7.
[11] L. Huang, H. Liu and X. Mo, On the landsberg curvature of a class of Finsler metrics generated from the navigation problem, Pacific J. Math. 302(1) (2019), 77-96.
[12] L. Huang and X. Mo, On conformal fields of a Randers metric with isotropic S-curvature, Ill. J. Math. 57 (2013), 685-696.
[13] L. Huang and X. Mo, On geodesics of Finsler metrics via navigation problem, Proc. Amer. Math. Soc. 139(8) (2011), 3015-3024.
[14] L. Huang and X. Mo, On the flag curvature of a class of Finsler metrics produced by the navigation problem, Pacific J. Math. 277(1) (2015), 149-168.
[15] L. Kang, On conformal fields of (α, β)-spaces, preprint, 2011 (unpublished).
[16] H. Liu and X. Mo, The explicite construction of all dually flat Randers metrics, Internt. J. Math. 28 (2017), 1750058, 12pp.
[17] X. Mo and L. Hang, On curvature decreasing property of a class of navigation problems, Publ. Math. Debrecen, 71(1-2) (2007), 141-163.
[18] C. Robles, Geodesics in Randers spaces of constant curvature, Trans. Ams. Math. Soc. 359(4) (2007), 1633- 1651.
[19] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128 (1997), 306- 328.
[20] Z. Shen, Finsler metrics with K = 0 and S = 0 , Canad. J. Math. 55(1) (2003), 112-132.
[21] Z. Shen, Landsberg curvature, S-curvature and Riemann curvature, In “A Simpler of Finsler Geometry” MSRI series, Cambridge University Press, 2004.
[22] Y. Shen and Z.Shen, Introduction to modern Finsler geometry, Higher Education Press, Beijing, 2016.
[23] Z. Shen and Q. Xia, On conformal vector fields on Randers manifolds, Sci. China Math. 55(9) (2012), 1869-1882.
[24] Z. Shen and Q. Xia, A class of Randers metrics of scalar flag curvature, Internat. J. Math. 24(7) (2013), 146-155.
[25] Z. Shen and H. Xing, On Randers metrics with isotropic S-curvature, Acta Math. Sinica, English Series, 24(5) (2008), 789-796.
[26] Z. Shen and G. C. Yildirim, A Characterization of Randers Metrics of Scalar Flag Curvature, in Surveys in Geometric Analysis and Relativity, Advanced Lectures in Mathematics, Vol. 23 (International Press, 2012), 345-358.
[27] Z. Shen and M. Yuan, Conformal vector fields on some Finsler manifolds, Sci. China Math. 59(1) (2016), 107-114.
[28] Q. Xia, On the flag curvature of a class of Randers metric generated from the navigation problem, J. Math. Anal. Appl. 397 (2013), 415-427.
[29] Q. Xia, On Kropina metrics of scalar flag curvature, Differential Geom. Appl. 31 (2013), 393-404.
[30] Q. Xia, Conformal vector fields on Finsler manifolds, Internat. J. Math. 31(12) (2020), 2050095, 13pp.
[31] H. Xing, The geometic meaning of Randers Metrics with Isotropic S-curvature, Adv. Math.(China), 34(6) (2005), 717-730.
[32] R. Yoshikawa and K. Okubo, Kropina spaces of constant curvature, Tensor, N. S. 68 (2007), 190-203.
[33] R. Yoshikawa and K. Okubo, Kropina spaces of constant curvature II, Balkan J. Geom. Appl. 17 (2012), 115-124.
[34] C. Yu, On dually flat Randers metrics, Nonlinear Anal. 95 (2014), 146-155.
[35] C. Yu and H. Zhu, On a new class of Finsler metrics, Diff. Geom. Appl. 29 (2011), 244-254.
[36] E. Zermelo, Uber das Navigaionsproblem bei ruhender oder ver¨anderlicher Windverteilung, Z. Angew. Math. ¨ Mech. 11(2) (1931), 114-124.
[37] X. Zhang and Y. Shen, On Einstein Kropina metrics, Diff. Geom. Appl. 31 (2013), 80-92.