[1] P. Antonelli and B. Lackey, The theory of Finslerian Laplacians and applications, MAIA 459, Dordrecht: Kluwer Academic Publishers, 1998.
[2] I. Bucataru and R. Miron, Finsler-Lagrange Geometry. Applications to Dynamical Systems, Romanian Academy Publication House, 2007.
[3] S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, Vol. 6, World Scientific, 2005.
[4] Y. Ge and Z. Shen, Eigenvalues and eigenfunctions of metric measure manifolds, Proc. London. Math. Soc., 82(3) (2001), 725-746.
[5] Q. He, S. Yin and W. Zhao, Finsler harmonic maps and Laplace operators (Chinese), Science Press, Beijing, 2014.
[6] H. Hrimiuc and H. Shimada, On the L-duality between Finsler and Hamilton manifolds, Nonlinear World, 3 (1996), 613-641.
[7] J. L. Jauregui and W. Wylie, Conformal diffeomorphisms of gradient Ricci solitons and generalized quasi[1]Einstein manifolds, The Journal of Geometric Analysis, 25(1) (2015), 668-708.
[8] P. Joharinad and B. Bidabad, Conformal vector fields on Finsler spaces, Differential Geometry and its Appli[1]cations, 31(2013), 33-40.
[9] R. L. Lovas, Affine and projective vector fields on spray manifolds, Periodica Mathematica Hungarica, 48(1-2) (2004), 165-179.
[10] S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, 36 (2009), 211-249.
[11] S. Ohta and K. T. Sturm, Bochner-Weitzenbock formula and Li-Yau estimates on Finsler manifolds, Adv. Math., 252(2014), 429-448.
[12] P. Petersen, Riemannian Geometry (Third Edition), Graduate Texts in Mathematics, 171, Springer, 2016.
[13] Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
[14] Y.-B. Shen and Z. Shen, Introduction to Modern Finsler Geometry, Higher Education Press, Beijing, 2016.
[15] B. Thomas, A natural Finsler-Laplace operator, Israel J. Math., 196(1) (2013), 375-412.
[16] G. Wang and C. Xia, A sharp lower bound for the first eigenvalue on Finsler manifolds, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 30(6) (2013), 983-996.
[17] Q. Xia, A sharp lower bound for the first eigenvalue on Finsler manifolds with nonnegative weighted Ricci curvature, Nonlinear Analysis, 117 (2015), 189-199.
[18] Q. Xia, Sharp spectral gap for the Finsler p-Laplacian, Sci China Math, 62 (2019), https://doi.org/10.1007/s11425-018-9510-5 .
[20] B. Y. Wu and Y. L. Xin, Comparison theorems in Finsler geometry and their applications, Math. Ann., 337 (2007), 177-196.