[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network flows: theory, algorithms and applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[2] D. P. Bertsekas, Linear Network Optimization: Algorithms and Codes, MIT Press, Cambridge, MA, 1991.
[3] L. Bodin, B. Golden, A. Assad, M. Ball, Routing and scheduling of vehicles and crews: the state of the art, Computers and Operations Research, 10 (1983) 63-211.
[4] G. Carpaneto, M. DellAmico, M. Fischetti, P. Toth, A branch and bound algorithm for the multiple vehicle scheduling problem, Computers and Operations Research, 19 (1989) 531-548.
[5] S. Carosi, A. Frangioni, L. Galli, L. Girardi, G. Vallese, A matheuristic for integrated timetabling and vehicle scheduling. Transportation Research Part B: Methodological, 127 (2019) 99-124.
[6] M. DellAmico, M. Fischetti, P. Toth, Heuristic algorithms for the multiple depot vehicle scheduling problem, Management Science, 39 (1993) 115-125.
[7] J. Desrosiers, Y. Dumas, M. M. Solomon, F. Soumis, Time constrained routing and schedulin, Handbooks in operations research and management science: Network routing, M. O. Ball, T. L. Magnanti, C. L. Monma and G. L. Nemhauser (Eds.), (1995) 35-139.
[8] D. T. Eliiyi, A. Ornek, S. S. Karaku tu, A vehicle scheduling problem with fixed trips and time limitations, International Journal of Production Economics, 117 (2009) 150-161.
[9] M. A. Forbes, J. N. Holt, A. M. Watts, An exact algorithm for multiple depot bus scheduling, European Journal of Operational Research, 72 (1994) 115-124.
[10] R. Freling, A. P. M. Wagelmans, J. M. P. Paixo, Models and Algorithms for Single-Depot Vehicle Scheduling, Transportation Science, 35 (2001) 165-180.
[11] M. R. Garey, D. S. Johnson, Computer and Intractability, A Guide to the Theory of NP-Completeness, New York, NY, USA, 2000.
[12] P. C. Guedes, D. Borenstein, Column generation based heuristic framework for the multiple-depot vehicle type scheduling problem, Computers & Industrial Engineering, 90 (2015), 361-370.
[13] V. Guihaire, J. K. Hao, Transit network design and scheduling: A global review, Transportation Research Part A, 42 (2008), 1251-1273.
[14] A. Hadjar, O. Marcotte, F. Soumis, A branch-and-cut algorithm for the multiple depot vehicle scheduling problem, Operations Research, 54 (2006) 130-149.
[15] N. Huimin, Z. Xuesong, T. Xiaopeng, Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking, Transportation Research Part B: Methodological, 107 (2018) 70-101.
[16] O. J. Ibarra-Rojas, R. Giesen, Y. A. Rios-Solis, An integrated approach for timetabling and vehicle scheduling problems to analyze the tradeoff between level of service and operating costs of transit networks, Transportation Research Part B, 70 (2014) 35-46.
[17] B. Laurent, J.-K. Hao, Iterated local search for the multiple depot vehicle scheduling problem, Computers & Industrial Engineering, 57 (2009), 277-286.
[18] Q. Huang, E Lloyd, Cost Constrained Fixed Job Scheduling, Theoretical computer sciences, proceedings. Lecture notes in computer science, 2003.
[19] N. Kliewer, T. Mellouli, L. Suhl, A timespace network based exact optimization model for multi-depot bus scheduling, European Journal of Operational Research, 175 (2006) 1616-1627.
[20] S. Kulkarni, M. Krishnamoorthy, A. Ranade, A. T. Ernst, R. Patil, A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem, Transportation Research Part B: Methodological, 118 (2018) 457-487.
[21] M. Mesquita, J. Paixo, Multiple depot vehicle scheduling problem: a new heuristic based on quasi-assignment algorithms, Lecture notes in economics and mathematical systems, Computeraided transit scheduling, M. Desrochers and J.-M. Rousseau (Eds.), (1992) 167-180.
[22] M. Mnich, R. van Bevern, Parameterized complexity of machine scheduling: 15 open problems. Computers & Operations Research, 100 (2018) 254-261.
[23] H. Nagamochi, T. Ohnishi, Approximating a vehicle scheduling problem with time windows and handling times, Theoretical Computer Science, 393, (2008) 33-146.
[24] M. Niksirat, S. M. Hashemi, M. Ghatee, Branch-and-price algorithm for fuzzy integer programming problems with block angular structure, Fuzzy Sets and Systems, 296 (2016) 70-96.
[25] T. Liu, A. A. Ceder, Battery-electric transit vehicle scheduling with optimal number of stationary chargers. Transportation Research Part C: Emerging Technologies, 114 (2020) 118-139.
[26] E. Levner, V. Kats, D. A. L. de Pablo, T. E. Cheng, Complexity of cyclic scheduling problems: A state-of-the-art survey. Computers & Industrial Engineering, 59 (2010) 352-361.
[27] A. R. Odoni, J.-M. Rousseau, N. H. M. Wilson, Multiple depot vehicle scheduling problem: a new heuristic based on quasi-assignment algorithms, Handbooks in operations research and management, S. M. Pollock, M. H. Rothkopf, and A. Barnett (Eds.)”, (1994) 107-150.
[28] E. F. Olariu, C. Frasinaru, Multiple-Depot Vehicle Scheduling Problem Heuristics, 2020, arXiv preprint arXiv:2004.14951.
[29] C.Ribeiro, F. Soumis, A column generation approach to the multiple depot vehicle scheduling problem, Operations Research, 42 (1994) 41-52.
[30] J. Ren, D. Du, D. Xu, The complexity of two supply chain scheduling problems. Information Processing Letters, 113 (2013) 609-612.
[31] G. Simonin, R. Giroudeau, J. C. K¨onig, Complexity and approximation for scheduling problem for a torpedo. Computers & Industrial Engineering, 61 (2011) 352-356.
[32] C. Wang, H. Shi, X. Zuo, A multi-objective genetic algorithm based approach for dynamical bus vehicles scheduling under traffic congestion. Swarm and Evolutionary Computation, 54 (2020) 100667.
[33] E. Yao, T. Liu, T.Lu, Y. Yang, Optimization of electric vehicle scheduling with multiple vehicle types in public transport. Sustainable Cities and Society, 52 (2020) 101862.
[34] Y. Zheng, Y. Shang, Z. Shao, L. Jian, A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid. Applied Energy, 217 (2018) 1-13.