[1] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wasley, Metal Foams: A Design Guide, Society of Automotive Engineers, Boston, Mass, USA, 2000.
[2] J. Banhart, Metallschaume, MIT, Bermen, Germany, 1997.
[3] A. Bhakta, E. Ruckenstein, Decay of standing foams: drainage, coalescence and collapse, Advances in Colloid and Interface Science, vol. 70, no. 1-3 (1997)1-123.
[4] M. Durand, D. Langevin, Physicochemical approach to the theory of foam drainage, European Physical Journal E, vol. 7, no. 1 (2002) 35-44.
[5] L. J. Gibson, M. F. Ashby, Cellular Solids: Structure & Properties, Cambridge University Press, Cambridge, UK, 1997.
[6] L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK, 1999.
[7] S. Hilgenfeldt, S. A. Koehler, H. A. Stone, Dynamics of coarsening foams: accelerated and self-limiting drainage, Physical Review Letters, vol. 86, no. 20 (2001) 4704-4707.
[8] S. A. Koehler, H. A. Stone, M. P. Brenner, J. Eggers, Dynamics of foam drainage, Physical Review E, vol. 58, no. 2 (1998) 2097-2106.
[9] R. A. Leonard, R. Lemlich, A study of interstitial liquid flow in foam, AIChE Journal, vol. 11 (1965) 18-29.
[10] S. Lie, F. Engel, Theorie der transformationsgruppen; Teubner: Leipzig, Germany, 1888.
[11] S. Lie, Vorlesungen ¨uber differentialgleichungen mit bekannten infinitesimalen transformationen; Teubner: Leipzig, Germany, 1891.
[12] A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley & Sons, New York, NY, USA, 1981.
[13] E. Noether, Invariante Variationsprobleme. Nachr. v. d. Ges. d. Wiss. zu G¨ottingen, Math. Phys. Kl. 1918, 235–257; English translation, Transp. Th. Stat. Phys. 1 (1971) 186-207.
[14] R. K. Prud’homme, S. A. Khan, Foams: Theory, Measurements and Applications, Marcel Dekker, New York, NY, USA, 1996.
[15] H. A. Stone, S. A. Koehler, S. Hilgenfeldt, M. Durand, Perspectives on foam drainage and the influence of interfacial rheology, Journal of Physics Condensed Matter, vol. 15, no. 1 (2003) S283-S290.
[16] S. D. Stoyanov, V. N. Paunov, E. S. Basheva, I. B. Ivanov, A. Mehreteab, G. Broze, Motion of the front between thick and thin film: hydrodynamic theory and experiment with vertical foam films, Langmuir, vol. 13, no. 6 (1997) 1400-1407.
[17] G. Verbist, D. Weaire, Soluble model for foam drainage, Europhysics Letters, vol. 26 (1994) 631-634.
[18] G. Verbist, D. Weaire, A soluble model for foam drainage, Europhysics Letters, vol. 26, no. 8 (1994) 631.
[19] G. Verbist, D. Weaire, A. M. Kraynik, The foam drainage equation, Journal of Physics Condensed Matter, vol. 8, no. 21 (1996) 3715-3731.
[20] D. Weaire, S. Hutzler, N. Pittet, D. Pardal, Steady-state drainage of an aqueous foam, Physical Review Letters, vol. 71, no. 16 (1993) 2670-2673.
[21] D. Weaire, S. Findlay, G. Verbist, Measurement of foam drainage using AC conductivity, Journal of Physics: Condensed Matter, vol. 7, no. 16 (1995) L217-L222.
[22] D. Weaire, S. Hutzler, G. Verbist, E. A. J. Peters, A review of foam drainage, Advances in Chemical Physics, vol. 102 (1997) 315-374.
[23] D. L. Weaire, S. Hutzler, The Physics of Foams, Oxford University Press, Oxford, UK, 2000.
[24] D. Weaire, S. Hutzler, S. Cox, N. Kern, M. D. Alonso, D. D. Drenckhan, The fluid dynamics of foams, Journal of Physics Condensed Matter, vol. 15, no. 1 (2003) S65-S73.
[25] J. I. B. Wilson, Essay review, scholarly froth and engineering skeletons, Contemporary Physics, vol. 44 (2003) 153-155.