[1] N. Anjum, J. H. He, Laplace transform: making the variational iteration method easier, Applied Mathematics Letters, 92 (2019) 134-138.
[2] L. Beghin, E. Orsingher, Fractional Poisson processes and related planar random motions, Electronic Journal of Probability, 14 (2009) 1790-1826.
[3] J. An, E. Van Hese, M. Baes, Phase-space consistency of stellar dynamical models determined by separable augmented densities, Monthly Notices of the Royal Astronomical Society, 422(1) (2012) 652-664.
[4] V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, Journal of Mathematical Analysis and Applications, 316(2) (2006) 753-763.
[5] M. H. Derakhshan, A. Ansari, Fractional Sturm-Liouville problems for Weber fractional derivatives, International Journal of Computer Mathematics, 96(2) (2019) 217-237.
[6] M. H. Derakhshan, A. Ansari, On Hyers-Ulam stability of fractional differential equations with Prabhakar derivatives, Analysis, 38(1), (2018) 37-46.
[7] M. H. Derakhshan, A. Ansari, Numerical approximation to Prabhakar fractional Sturm-Liouville problem, Computational and Applied Mathematics, 38(2) (2019) 71-90. https://doi.org/10.1007/s40314-019-0826-4.
[8] M. H. Derakhshan, A. Ansari, M. Ahmadi Darani, On asymptotic stability of Weber fractional differential systems, Computational Methods for Differential Equations, 6(1) (2018) 30-39.
[9] M. H. Derakhshan, M. Ahmadi Darani, A. Ansari, R. Khoshsiar Ghaziani, On asymptotic stability of Prabhakar fractional differential systems, Computational Methods for Differential Equations, 4(4) (2016) 276-284.
[10] M. D’Ovidio, F. Polito, Fractional diffusion-telegraph equations and their associated stochastic solutions, (2013) arXiv preprint arXiv:1307.1696.
[11] B. Dumitru, D. Kai, S. Enrico, Fractional calculus: models and numerical methods (Vol. 3). World Scientific (2012).
[12] A. Giusti, I. Colombaro, Prabhakar-like fractional viscoelasticity, Communications in Nonlinear Science and Numerical Simulation, 56 (2018) 138-143.
[13] K. G´orska, A. Horzela, L. Bratek, K. A. Penson, G. Dattoli, The probability density function for the Havriliak Negami relaxation, (2016) arXiv preprint arXiv:1611.06433.
[14] R. Garrappa, F. Mainardi, M. Guido, Models of dielectric relaxation based on completely monotone functions, Fractional Calculus and Applied Analysis, 19(5) (2016) 1105-1160.
[15] A. Ghorbani, Beyond Adomian polynomials: he polynomials, Chaos, Solitons & Fractals, 39(3) (2009) 1486- 1492.
[16] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications (Vol. 2). Berlin: Springer (2014).
[17] R. Garra, R. Gorenflo, F. Polito, Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, Applied ˇ Mathematics and Computation, 242 (2014) 576-589.
[18] J. H. He, Homotopy perturbation technique, Computer methods in applied mechanics and engineering, 178(3-4) (1999) 257-262.
[19] M. Hamarsheh, A. I. Ismail, Z. Odibat, An analytic solution for fractional order Riccati equations by using optimal homotopy asymptotic method, Applied Mathematical Sciences, 10(23) (2016) 1131-1150.
[20] H. Jafari, Iterative methods for solving system of fractional differential equations, Doctoral dissertation, Pune University, Pune, India, (2006).
[21] B. Karaagac, Two step Adams Bashforth method for time fractional Tricomi equation with non-local and non-singular Kernel, Chaos, Solitons & Fractals, 128 (2019) 234-241.
[22] P. Karunakar, S. Chakraverty, Solutions of time-fractional third-and fifth-order Korteweg-de-Vries equations using homotopy perturbation transform method. Engineering Computations, 36(7) (2019) 2309-2326. https://doi.org/10.1108/EC-01-2019-0012.
[23] A. A. Kilbas, M. Saigo, R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms and Special Functions, 15(1) (2004) 31-49.
[24] A. Liemert, T. Sandev, H. Kantz, Generalized Langevin equation with tempered memory kernel, Physica A: Statistical Mechanics and its Applications, 466 (2017) 356-369.
[25] P. Miskinis, The Havriliak-Negami susceptibility as a nonlinear and nonlocal process, Physica Scripta, 2009(T136) (2009) 014019.
[26] T,.R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Mathematical Journal, 19 (1971) 7-15.
[27] A. Prakash, M. Goyal, S. Gupta, Fractional variational iteration method for solving time-fractional Newell Whitehead-Segel equation, Nonlinear Engineering, 8(1) (2019) 164-171.
[28] A. Prakash, H. Kaur, A New Numerical Method for a Fractional Model of Non-Linear Zakharov-Kuznetsov Equations via Sumudu Transform Methods of Mathematical Modelling: Fractional Differential Equations, (2019) 189-204.
[29] S. A. Pasha, Y. Nawaz, M. S. Arif, The modified homotopy perturbation method with an auxiliary term for the nonlinear oscillator with discontinuity, Journal of Low Frequency Noise, Vibration and Active Control, 38(3-4) (2019) 1363-1373.
[30] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Vol. 198). Elsevier (1998).
[31] N. A. Pirim, F. Ayaz, A new technique for solving fractional order systems: Hermite collocation method, Applied Mathematics, 7(18) (2016) 2307-2323.
[32] R. K. Pandey, H. K. Mishra, Homotopy analysis Sumudu transform method for time-fractional third order dispersive partial differential equation, Advances in Computational Mathematics, 43(2) (2017) 365-383.
[33] H. C. Rosu, O. Cornejo-P´erez, Supersymmetric pairing of kinks for polynomial nonlinearities, Physical Review E, 71(4) (2005) 046607. doi: 10.1103/PhysRevE.71.046607.
[34] A. Stanislavsky, K. Weron, Atypical case of the dielectric relaxation responses and its fractional kinetic equation, Fractional Calculus and Applied Analysis, 19(1) (2016) 212-228.
[35] M. Tatari, M. Dehghan, On the convergence of He’s variational iteration method, Journal of Computational and Applied Mathematics, 207(1) (2007) 121-128.
[36] J. Vahidi, The combined Laplace-homotopy analysis method for partial differential equations, J. Math. Comput. Sci.JMCS, 16(1) (2016) 88-102.
[37] H. Y´epez-Mart´ınez, J. F. G´omez-Aguilar, A new modified definition of Caputo-Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), Journal of Computational and Applied Mathematics, 346 (2019) 247-260.
[38] D. N. Yu, J. H. He, A. G. Garcıa, Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators, Journal of Low Frequency Noise, Vibration and Active Control, 38(3-4) (2019) 1540-1554.