[1] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, M. Yannakakis, The complexity of multiway cuts, In Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, (1992) 241-251.
[2] G. C˘alinescu, H. Karloff, Y. Rabani, An improved approximation algorithm for multiway cut, In Proceedings of the thirtieth annual ACM symposium on Theory of computing, (1998) pages 48-52.
[3] D. R. Karger, P. Klein, C. Stein, M. Thorup, N. E. Young, Rounding algorithms for a geometric embedding of minimum multiway cut, Mathematics of Operations Research, 29(3) (2004) 436-461.
[4] N. Garg, V. V. Vazirani, M. Yannakakis, Multiway cuts in directed and node weighted graphs, In International Colloquium on Automata, Languages, and Programming, 487-498, Springer, 1994.
[5] J. Naor, L. Zosin, A 2-approximation algorithm for the directed multiway cut problem, SIAM Journal on Computing, 31(2) (2001) 477-482.
[6] N. Garg, V. V. Vazirani, M. Yannakakis, Approximate max-flow min-(multi) cut theorems and their applications, SIAM Journal on Computing, 25(2) (1996) 235-251.
[7] J. Chuzhoy, Y. Makarychev, A. Vijayaraghavan, Y. Zhou, Approximation algorithms and hardness of the k-route cut problem, ACM Transactions on Algorithms (TALG), 12(1) (2015) 1-40.
[8] J. Bang-Jensen, A. Yeo, The complexity of multicut and mixed multicut problems in (di) graphs, Theoretical Computer Science, 520 (2014) 87-96.
[9] G. Even, J. S. Naor, S. Rao, B. Schieber, Divide-and-conquer approximation algorithms via spreading metrics, Journal of the ACM (JACM), 47(4) (2000) 585-616.
[10] T. Leighton, S. Rao, An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms, Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE MICROSYSTEMS RESEARCH CENTER, 1989.
[11] G. Even, J. S. Naor, B. Schieber, M. Sudan, Approximating minimum feedback sets and multicuts in directed graphs, Algorithmica, 20(2) (198) 151-174.
[12] P. N. Klein, S. A. Plotkin, S. Rao, E. Tardos, Approximation algorithms for steiner and directed multicuts, Journal of Algorithms, 22(2) (1997) 241-269.
[13] J. Cheriyan, H. Karloff, Y. Rabani, Approximating directed multicuts, Combinatorica, 25(3) (2005) 251-269.
[14] A. Agarwal, N. Alon, M. S. Charikar, Improved approximation for directed cut problems, In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, (2007) 671-680.
[15] M. Saks, A. Samorodnitsky, L. Zosin, A lower bound on the integrality gap for minimum multicut in directed networks, Combinatorica, 24(3) (2004) 525-530.
[16] A. Avidor, M. Langberg, The multi-multiway cut problem, Theoretical Computer Science, 377(1-3) (2007) 35-42.
[17] I. Kanj, G. Lin, T. Liu, W. Tong, G. Xia, J. Xu, B. Yang, F. Zhang, P. Zhang, B. Zhu, Improved parameterized and exact algorithms for cut problems on trees, Theoretical Computer Science, 607 (2015) 455-470.
[18] P. Zhang, D. Zhu, J. Luan, An approximation algorithm for the generalized k-multicut problem, Discrete Applied Mathematics, 160(7-8) (2012) 1240-1247.
[19] M. Gr¨otschel, L. Lov´asz, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1(2) (1981) 169-197.