[1] M. Alizadeh, M. Emadi, M. Doostparast, G. M. Cordeiro, E. Ortega, R. Pescim, A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications, Hacet. J. Math. Stat. 44(6) (2015) 1491-1512.
[2] M. Alizadeh, H. M. Yousof, M. Rasekhi, E. Altun, The odd Log-Logistic Poisson-G family of distributions, J. Math. Exten., 12(3) (2018) 81-104.
[3] W. Barreto-Souza, A. H. S. Santos, G. M. Cordeiro, The beta generalized exponential distribution, J. Stat. Comput. Simul. 80(1-2) (2010) 159-172.
[4] V. G. Canchoa, F. Louzada-Neto, G. D.C. Barriga, The Poisson-exponential lifetime distribution, Computational Statistics and Data Analysis, 55 (2011) 677-686.
[5] K. Cooray, Generalization of the Weibull distribution: the odd Weibull family, Statistical Modelling, 6 (2006) 265-277.
[6] G. M. Cordeiro, M. Alizadeh, E. M. M. Ortega, L. H. Valdivieso Serrano, The Zografos-Balakrishnan odd log-logistic family of distributions: properties and applications, Hacet. J. Math. Stat, 45(6) (2016) 1781-1803.
[7] G. M. Cordeiro, M. Alizadeh, M. H. Tahir, M. Mansoor, M. Bourguignon, G. G. Hamedani, The beta odd log-logistic generalized family of distributions, Hacet. J. Math. Stat, 45 (2016) 1175-1202.
[8] G. M. Cordeiro, R. B. Silva, The complementary extended Weibull power series class of distributions, Ciˆencia e Natura, 36 (2014) 1-13.
[9] D. Cox, D. Hinkley, Theoretical Statistics, Chapman and Hall, New York, first edition, 1979.
[10] I. Elbatal, A. Asgharzadeh, F. Sharafi, A new class of generalized power Lindley distributions, Journal of Applied Probability and Statistics, 10 (2015) 89-116.
[11] F. Famoye, C. Lee, O. Olumolade, The beta-Weibull distribution, J. Stat. Theory Appl., 4(2) (2005) 121-136.
[12] J. Flores, P. Borges, V. G. Cancho, F. Louzada, The complementary exponential power series distribution, Brazilian Journal of Probability and Statistics, 27 (2013) 565-584.
[13] M. Goldoust, S. Rezaei, Y. Si, S. Nadarajah, Lifetime distributions motivated by series and parallel structures, Comm. Statist. Simulation Comput. 48(2) (2019) 556-579.
[14] A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84(3) (1997) 641-652.
[15] B. G. Munteanu, A. Leahu, I. Pˆartachi, The max-Weibull power series distribution, An. Univ. Oradea Fasc. Mat., 21(2) (2014) 133-139.
[16] A. Noack, A class of random variables with discrete distributions, Ann. Math. Statistics, 21 (1950) 127-132.