[1] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless method: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139 (1996) 3-47.
[2] J. S. Chen, C. Pan, C.T. Wu, W.K. Liu, Reproducing kernel particle methods for large deformation analysis of non-linear structures, Comput. Methods Appl. Mech. Eng., 139 (1996) 195-227.
[3] L. Chen, Y. M. Cheng, The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations, Computational Mechanics, 62 (2018) 67-80.
[4] Y. M. Cheng, F. Bai, C. Liu, M. Peng, Analyzing nonlinear large deformation with an improved element-free Galerkin method via the interpolating moving least-squares method, International Journal of Computational Materials Science and Engineering, 5 (2016) 1650023.
[5] Y. M. Cheng, C. Liu, F. N. Bai, M. J. Peng, Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method, Chinese Physics B, 24 (2015).
[6] M. Dehghan, M. Abbaszadeh, A local meshless method for solving multi-dimensional Vlasov-Poisson and VlasovPoisson–Fokker–Planck systems arising in plasma physics, Engineering with Computers, 33 (2017) 961-981.
[7] M. Dehghan, M. Abbaszadeh, Proper orthogonal decomposition variational multiscale element free Galerkin (PODVMEFG) meshless method for solving incompressible Navier–Stokes equation, Computer Methods in Applied Mechanics and Engineering, 311 (2016) 856-888.
[8] M. Dehghan, M. Abbaszadeh, An upwind local radial basis functions-differential quadrature (RBF-DQ) method with proper orthogonal decomposition (POD) approach for solving compressible Euler equation, Engineering Analysis with Boundary Elements 92 (2018) 244-256.
[9] M. Dehghan, H. Hosseinzadeh, Calculation of 2D singular and near singular integrals of boundary elements method based on the complex space C, Applied Mathematical Modelling, 36 (2012) 545-560.
[10] M. Dehghan, H. Hosseinzadeh, Improvement of the accuracy in boundary element method based on high-order discretization, Computers & Mathematics with Applications, 62 (2011) 4461-4471.
[11] M. Dehghan, H. Hosseinzadeh, Obtaining the upper bound of discretization error and critical boundary integrals of circular arc boundary element method, Mathematical and Computer Modelling, 55 (2012) 517-529.
[12] W. Elleithy, Analysis of problems in elasto-plasticity via an adaptive FEM-BEM coupling method, Comput. Methods Appl. Mech. Eng., 197 (2008) 3687-3701.
[13] B. Fornberg, E. Larsson, N. Flyer, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput., 33 (2011) 869-892.
[14] R. Gowrishankar, S. Mukherjee, A pure boundary node method for potential theory, Commun. Numer. Meth. Eng. 18 (2002) 411-427.
[15] S. Jun, W.K. Liu, T. Belytschko, Explicit reproducing kernel particle methods for large deformation problems, Int. J. Numer. Methods Eng. 41 (1998) 137- 166.
[16] S. J. Kim, J. T. Oden, Finite element analysis of a class of problems in finite elastoplasticity based on the thermodynamical theory of materials of type N, Comput. Methods Appl. Mech. Eng., 53 (1985) 277-302.
[17] E. Larsson, E. Lehto, A. Heryudono, B. Fornberg, Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions, SIAM J. Sci. Comput. 35(4) (2013) A2096-A2119.
[18] D. M. Li, K. M. Liew, Y. M. Cheng, An improved complex variable element-free Galerkin method for two-dimensional large deformation elastoplasticity problems, Comput. Methods Appl. Mech. Eng., 269 (2014) 72-86.
[19] X. Li, J. Zhu, On a Galerkin boundary node method for potential problems, Advances in Engineering Software, 42 (2011) 927-933.
[20] X. Li, J. Zhu, A Galerkin boundary node method and its convergence analysis, J. Comput. Appl. Math., 230 (2009) 314-328.
[21] X. Li, Meshless analysis of two-dimensional Stokes flows with the Galerkin boundary node method, Eng. Anal. Bound. Elem., 34 (2010) 79-91.
[22] X. Li, S. Li, Meshless boundary node methods for Stokes problems, Appl. Math. Model., 39 (2015) 1769-1783.
[23] X. Li , A meshless interpolating Galerkin boundary node method for Stokes flows, Eng. Anal. Bound. Elem., 51 (2015) 112-122.
[24] K. M. Liew, Y. Cheng, S. Kitipornchai, Boundary element-free method (BEFM) for two-dimensional elastodynamic analysis using Laplace transform, Int. J. Numer. Meth. Eng., 64 (2005) 1610-1627.
[25] G. R. Liu, Y. T. Gu, An Introduction to Meshfree Methods and Their Programming, Springer Science & Business Media, 2005.
[26] G. R. Liu, Meshfree Methods: Moving Beyond the Finite Element Method, Taylor & Francis, 2009.
[27] G. R. Liu, G. Y. Zhang, Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC-PIM), Int. J. Numer. Meth. Eng., 74 (2008) 1128-1161.
[28] W. K. Liu, S. Jun, Multiple-scale reproducing kernel particle methods for large deformation problem, Int. J. Numer. Methods Eng., 41 (1998) 1339-1362.
[29] J. H. Lv, Y. Miao, H. P. Zhu, Boundary node method based on parametric space for 2D elasticity, Eng. Anal. Bound. Elem., 37 (2013) 659-665.
[30] H. P. Ren, Y. M. Cheng, W. Zhang, An interpolating boundary element-free method (IBEFM) for elasticity problems, Physics, Mechanics & Astronomy, 53 (2010) 758-766.
[31] Z. J. Meng, H. Cheng, L. D. Ma, Y. M. Cheng, The dimension split element-free Galerkin method for three-dimensional potential problems, Acta Mechanica Sinica/Lixue Xuebao, 34(3) (2018) 462-474.
[32] Miao Yu, W. Yuan-han, Meshless analysis for three-dimensional elasticity with singular hybrid boundary node method, Appl. Math. Mech., 27 (2006) 673–681.
[33] D. Mirzaei, A new low-cost meshfree method for two and three dimensional problems in elasticity, Appl. Math. Model., 39 (2015) 7181-7196.
[34] Y. X. Mukherjee, S. Mukherjee, The boundary node method for potential problems, Int. J. Numer. Meth. Eng., 40 (1997) 797-815.
[35] M. Peng, D. Li, Y. M. Cheng, The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems, Engineering Structures, 33 (2011) 127-135.
[36] M. Tezer-Sezgin, Boundary element method solution of MHD flow in a rectangular duct, Internat. J. Numer. Methods Fluids, 18 (1994) 937-952.
[37] M. Tezer-Sezgin, S. Han Aydin, Solution of magnetohydrodynamic flow problems using the boundary element method, Eng. Anal. Bound. Elem., 30 (2006) 411-418.
[38] M. Tezer-Sezgin, C. Bozkaya, Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field, Comput. Mech., 41 (2008) 769-775.
[39] M. Tezer-Sezgin, C. Bozkaya, The boundary element solution of magnetohydrodynamic flow in an infinite region, J. Comput. Appl. Math., 225 (2009) 510-521.
[40] J. Sladek, V. A. Sladek, A meshless method for large deflection of plates, Comput. Mech. 30 (2) (2003) 155-163.
[41] F. Sun, J. Wang, Y. M. Cheng, An improved interpolating element-free Galerkin method for elasticity, Chinese Physics B, 22(12) (2013) 120203.
[42] F. Sun, J. Wang, Y.M.Cheng, A. Huang, Error estimates for the interpolating moving least-squares method in ndimensional space, Applied Numerical Mathematics, 98 (2015) 79-105.
[43] F. Tan, Y. Zhang, Y. Li, Development of a meshless hybrid boundary node method for Stokes flows, Eng. Anal. Bound. Elem. 37 (2013) 899-908.
[44] F. Tan, Y. Zhang, Y. Li, An improved hybrid boundary node method for 2D crack problems, Archive of Applied Mechanics, 85 (2015) 101-116.
[45] M. Tatari, F. Ghasemi, The Galerkin boundary node method for magneto-hydrodynamic (MHD) equation, J. Comput. Phys. 258 (2014) 634-649.
[46] S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, third ed., McGraw-Hill, New York, 1970.
[47] J. Wang, J. Wang, F. Sun, Y. M. Cheng, An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems, International Journal of Computational Methods, 10 (2013) 1350043.
[48] H. Xie, T. Nogami, J. Wang, A radial boundary node method for two-dimensional elastic analysis, Eng. Anal. Bound. Elem., 27 (2003) 853-862.
[49] F. Yan, X. T. Feng, H. Zhou, Dual reciprocity hybrid radial boundary node method for the analysis of Kirchhoff plates, Appl. Math. Model. 35 (2011) 5691-5706.
[50] L. W. Zhang, K. M. Liew, An improved moving least-squares Ritz method for two-dimensional elasticity problems, Appl. Math. Comput., 246 (2014) 268-282.
[51] J. Zhang, Z. Yao, H. Li, A hybrid boundary node method, Int. J. Numer. Meth. Eng., 53 (2002) 751-763.
[52] Y. M. Zhang, F. L. Sun, D. L. Young, W. Chen, Y. Gud, Average source boundary node method for potential problems, Eng. Anal. Bound. Elem. 70 (2016) 114-125.