[1] R. San-Segundo, J. M. Montero, R. Barra-Chicote, F. Fern´andez, J. M. Pardo, Feature extraction from smartphone inertial signals for human activity segmentation, Signal Processing 120 (2016) 359–372.
[2] H. R. Eftekhari, M. Ghatee, An inference engine for smartphones to preprocess data and detect stationary and transportation modes, Transportation Research Part C: Emerging Technologies 69 (2016) 313–327.
[3] R. B. Zadeh, M. Ghatee, H. R. Eftekhari, Three-phases smartphone-based warning system to protect vulnerable road users under fuzzy conditions, IEEE Transactions on Intelligent Transportation Systems 19 (7) (2017) 2086–2098.
[4] M. M. Bejani, M. Ghatee, A context aware system for driving style evaluation by an ensemble learning on smartphone sensors data, Transportation Research Part C: Emerging Technologies 89 (2018) 303–320.
[5] H. R. Eftekhari, M. Ghatee, Hybrid of discrete wavelet transform and adaptive neuro fuzzy inference system for overall driving behavior recognition, Transportation research part F: traffic psychology and behaviour 58 (2018) 782–796.
[6] H. R. Eftekhari, M. Ghatee, A similarity-based neuro-fuzzy modeling for driving behavior recognition applying fusion of smartphone sensors, Journal of Intelligent Transportation Systems 23 (1) (2019) 72–83.
[7] M. M. Bejani, M. Ghatee, Convolutional neural network with adaptive regularization to classify driving styles on smartphones, IEEE Transactions on Intelligent Transportation Systems 21 (2) (2019) 543–552.
[8] N. Desai, K. Dhameliya, V. Desai, Feature extraction and classification techniques for speech recognition: A review, International Journal of Emerging Technology and Advanced Engineering 3 (12) (2013) 367–371.
[9] J. A. G´omez-Tejedor, J. C. Castro-Palacio, J. A. Monsoriu, The acoustic doppler effect applied to the study of linear motions, European Journal of Physics 35 (2) (2014) 025006.
[10] J. Gajda, R. Sroka, M. Stencel, A. Wajda, T. Zeglen, A vehicle classification based on inductive loop detectors, in: IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No. 01CH 37188), Vol. 1, IEEE, 2001, pp. 460– 464.
[11] J. George, A. Cyril, B. I. Koshy, L. Mary, Exploring sound signature for vehicle detection and classification using ann, International Journal on Soft Computing 4 (2) (2013) 29.
[12] G. Padmavathi, D. Shanmugapriya, M. Kalaivani, et al., A study on vehicle detection and tracking using wireless sensor networks, Wireless Sensor Network 2 (02) (2010) 173.
[13] A. Y. Nooralahiyan, M. Dougherty, D. McKeown, H. R. Kirby, A field trial of acoustic signature analysis for vehicle classification, Transportation Research Part C: Emerging Technologies 5 (3-4) (1997) 165–177.
[14] A. Averbuch, E. Hulata, V. Zheludev, I. Kozlov, A wavelet packet algorithm for classification and detection of moving vehicles, Multidimensional Systems and Signal Processing 12 (1) (2001) 9–31.
[15] M. V. Ghiurcau, C. Rusu, Vehicle sound classification. application and low pass filtering influence, in: 2009 International Symposium on Signals, Circuits and Systems, IEEE, 2009, pp. 1–4.
[16] A. Dalir, A. A. Beheshti, M. H. Masoom, Classification of vehicles based on audio signals using quadratic discriminant analysis and high energy feature vectors, arXiv preprint arXiv:1804.01212.
[17] M. P. Paulraj, A. H. Adom, S. Sundararaj, N. B. A. Rahim, Moving vehicle recognition and classification based on time domain approach, Procedia Engineering 53 (2013) 405–410.
[18] J. Lee, A. Rakotonirainy, Acoustic hazard detection for pedestrians with obscured hearing, IEEE Transactions on Intelligent Transportation Systems 12 (4) (2011) 1640–1649.
[19] N. Lubbe, E. Ros´en, Pedestrian crossing situations: Quantification of comfort boundaries to guide intervention timing, Accident Analysis & Prevention 71 (2014) 261–266.
[20] X. Jiang, W. Wang, K. Bengler, Intercultural analyses of time-to-collision in vehicle–pedestrian conflict on an urban midblock crosswalk, Ieee transactions on intelligent transportation systems 16 (2) (2014) 1048–1053.
[21] E. L. Salomons, P. J. Havinga, A survey on the feasibility of sound classification on wireless sensor nodes, Sensors 15 (4) (2015) 7462–7498.
[22] J. Scholliers, D. Bell, A. Morris, A. B. Garc´ıa Mel´endez, O. M. Perez, Improving safety and mobility of vulnerable road users through its applications, Traffic Safety 4 (2016) 251–269.
[23] T. Williams, P. Alves, G. Lachapelle, C. Basnayake, Evaluation of gps-based methods of relative positioning for automotive safety applications, Transportation research part C: emerging technologies 23 (2012) 98–108.
[24] G. Korres, A. El Issawi, M. Eid, Tactile glasses (tag) for obstacle avoidance, in: International Conference on Universal Access in Human-Computer Interaction, Springer, 2014, pp. 741–749.
[25] T. Schwarze, M. Lauer, M. Schwaab, M. Romanovas, S. B¨ohm, T. J¨urgensohn, A camera-based mobility aid for visually impaired people, KI-K¨unstliche Intelligenz 30 (1) (2016) 29–36.
[26] D. Ni, A. Song, L. Tian, X. Xu, D. Chen, A walking assistant robotic system for the visually impaired based on computer vision and tactile perception, International Journal of Social Robotics 7 (5) (2015) 617–628.
[27] M. Bagheri, M. Siekkinen, J. K. Nurminen, Cellular-based vehicle to pedestrian (v2p) adaptive communication for collision avoidance, in: 2014 international conference on connected vehicles and expo (ICCVE), IEEE, 2014, pp. 450–456.
[28] L. Zhenyu, P. Lin, Z. Konglin, Z. Lin, Design and evaluation of v2x communication system for vehicle and pedestrian safety, The Journal of China Universities of Posts and Telecommunications 22 (6) (2015) 18–26.
[29] N. A. Rahim, M. Paulraj, A. Adom, Adaptive boosting with svm classifier for moving vehicle classification, Procedia Engineering 53 (2013) 411–419.
[30] J. Berdnikova, T. Ruuben, V. Kozevnikov, S. Astapov, Acoustic noise pattern detection and identification method in doppler system, Elektronika ir Elektrotechnika 18 (8) (2012) 65–68.