[1] M.V. Aarset, How to identify a bathtub hazard rate, IEEE Transactions on Reliability, 36 (1987) 106-108.
[2] A. Al-Khedhairi, A. El-Gohary, A new class of bivariate Gompertz distributions and its mixture, International Journal of Mathematical Analysis, 2 (2008) 235-253.
[3] A.V. Asimit, E. Furman, R. Vernic, On a multivariate Pareto distribution, Insurance: Mathematics and Economics, 2 (2010) 308–316.
[4] A.V. Asimit, E. Furman, R. Vernic, Statistical inference for a new class of multivariate Pareto distributions, Communications in Statistics-Simulation and Computation, 2, (2016) 456-471.
[5] S.F. Bagheri, E. Bahrami Samani, M. Ganjali, The generalized modified Weibull power series distribution: Theory and applications, Computational Statistics and Data Analysis, 94 (2016) 136-160.
[6] N. Balakrishnan, C.D. Lai, Continuous bivariate distributions, New York, Springer, 2 2009.
[7] R.E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing, Probability Models, Maryland, Silver Spring, 1981.
[8] W. Barreto-Souza, Bivariate gamma-geometric law and its induce Levy process, Journal of Multivariate Analysis, 109 (2012) 130-145.
[9] G. Dinse, Non-parametric estimation of partially incomplete time and types of failure data, Biometrics, 38 (1982) 417-431.
[10] M. Chahkandi, M. Ganjali, On some lifetime distributions with decreasing failure rate, Computational Statistics and Data Analysis, 53 (2009) 4433-4440.
[11] M. Ghitany, E. Al-Hussaini, R. Al-Jarallah, Marshall-Olkin extended Weibull distribution and its application to censored data, Journal of Applied Statistics, 32 (2005) 1025-1034.
[12] M. Ghitany, F. Al-Awadhi, L. Alkhalfan, Marshall-Olkin extended lomax distribution and its application to censored data, Communications in Statistics - Theory and Methods, 36 (2007) 1855-1866.
[13] N.L. Johnson, S. Kotz, A vector of multivariate hazard rate, Journal of Multivariate Analysis, 5 (1975) 53-66.
[14] R.A. Johnson, D.W. Wiechern, Applied Multivariate Statistical Analysis, New Jersey, Prentice Hall, 1992.
[15] S. Kotz, N. Balakrishnan, N.L. Johnson, Continuous multivariate distributions, New York, John Wiley and Sons, 2000.
[16] D. Kundu, Parameter estimation for partially complete time and type of failure data, Biometrical Journal, 46 (2004) 165–179.
[17] D. Kundu, A. Dey, Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm, Computational Statistics and Data Analysis, 35 (2009) 956–965.
[18] D. Kundu, R.D. Gupta, Estimation of R = P(Y < X) for Weibull distribution, IEEE Transactions on Reliability, 55 (2006) 270–280.
[19] D. Kundu, R.D. Gupta, Modified Sarhan-Balakrishnan singular bivariate distribution, Journal of Statistical Planning and Inference, 140 (2010) 526–538.
[20] E.L. Lehmann, Some concepts of dependence, Annals of Mathematical Statistics, 37 (1966) 1137–1153.
[21] T.A. Louis, Finding the observed information matrix when using the EM algorithm, Journal of the Royal Statistical Society, 44 (1982) 226–233.
[22] A.W. Marshall, I. Olkin, A multivariate exponential distribution, Journal of the American Statistical Association, 62 (1967) 30–44.
[23] A.W. Marshall, I. Olkin, Families of multivariate distributions, Journal of the American Statistical Association, 83 (1988) 834–841.
[24] A.W. Marshall, I. Olkin, A new method of adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997) 641–652.
[25] S.G. Meintanis, Test of fit for Marshall-Olkin distributions with applications, Journal of Statistical Planning and inference, 137 (2007) 3954–3963.
[26] H. Pham, C.D. Lai, On recent generalizations of the Weibull distribution, IEEE Transactions on Reliability, 56 (2007) 454–458.
[27] A.M. Sarhan, N. Balakrishnan, A new class of bivariate distributions and its mixture, Journal of Multivariate Analysis, 98 (2007) 1508–1527.
[28] R.B. Silva, M. Bourguignon, C.R.B. Dias, G.M. Cordeiro, The compound class of extended Weibull power series distributions, Computational Statistics and Data Analysis, 58 (2013) 352–367.
[29] P. Veenus, KRM. Nair, Characterization of a bivariate Pareto distribution, Journal of Indian Statistical Association, 32 (1994) 15–20