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ABSTRACT: In the last decade, there has been a surge of interest in application
of fractional calculus in various areas such as, mathematics, physics, engineering,
mechanics and etc. So, numerical methods have rapidly been developed to handle
problems containing fractional derivatives (or integrals). Due to the fact that all
the operators which appear in fractional calculus are non-local, so, the classical lin-
ear multi-step methods have some difficulties from the (time/space) computational
complexity point of view. Recently, two new non-classical methods or diffusive
based methods have been proposed by the authors to approximate the Caputo
fractional derivatives. Here, the main aim of this paper is to use these methods
to solve linear multi-term fractional differential equations numerically. To reach
our aim, an efficient matrix approach has been provided to solve some well-known
multi-term fractional differential equations.
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1. Introduction

In the last decades, there has seen a rapid surge of literature on the importance of fractional calculus and their
broad applications (See for instance, [20, 21]). In fact, many real world problems can been modeled successfully
by the following multi-term fractional differential equation (MTFDE) with constant coefficients and homogeneous
initial conditions:

M∑
r=1

cr
CDαr

a+y(t) = f(t), 0 < α1 ≤ α2 ≤ · · · ≤ αM , y(a) = y(1)(a) = · · · = y(L−1)(a) = 0, L = ⌈αM⌉, (1)
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where cr ∈ R and f(t) is given continuous function and moreover, CDαr

a+ denotes Caputo fractional derivative of
order αr with starting point a [10, 20]:

CDαr

a+y(t) =
1

Γ(⌈αr⌉ − αr)

∫ t

a

(t− τ)⌈αr⌉−αr−1y(⌈αr⌉)(τ) dτ,

where Γ(.) is the Euler’s Gamma function.

As we are aware, the first step to solve MTFDE (1) numerically, is to present a numerical method that approx-
imates the Caputo fractional derivative(s) CDα

a+y(t). Thanks to the well-known property of the Caputo fractional
derivative (which is called non-locality), the numerical methods to approximate the Caputo operator have faced
with some difficulties from the (space/time) computational complexities viewpoint [11, 13].

Several numerical methods based on the local and global methods have been introduced to solve MTFDE (1)
(See [22] for various numerical methods to solve fractional differential equations). The proposed methods can be
categorized in two classes [22]:

• Direct Methods: In these methods we first approximate the Caputo fractional derivatives directly and thus
the numerical schemes can be obtained easily.

• Indirect Methods: In these methods, first, the obtained problem (1) is transformed into the fractional
integral equation and then by using a suitable method to discretize the obtained fractional integral, we can
get the numerical schemes.

The same feature of these methods is that to handle the non-locality of the fractional differential (or integral)
operators, they need a relatively large amount of time and/or computer memory [13, 11].

To overcome this drawback, a new representation of the Caputo fractional derivative (which is so-called as
diffusive representation (DR), infinite state representation (ISR) or memory free formulation (MFF)) was introduced
by Yuan and Agrawal in [1, 29]. They have shown that the Caputo fractional derivative can be represented as:

CDα
0+y(t) =

∫ +∞

0

ϕ(ω, t) dω, (2)

where ϕ(ω, t) for ω ∈ (0,+∞) called the observed system’s infinite states at time t. They also showed that the
function ω ∈ (0,+∞) satisfies the inhomogeneous first order differential equation in the following form:

∂

∂t
ϕ(ω, t) = h1(ω)ϕ(ω, t) + h2(ω)y

′(t), ϕ(ω, 0) = 0, (3)

with certain functions h1;h2 : (0,+∞) → R. K. Diethelm in his papers [9, 11, 13] has shown that the new
representation, in fact, has some good features such that:

• The non-locality property of the Caputo fractional derivative is removed.

• Due to the local property of (2), the (time/space) computational complexity of the new representation to
approximate the Caputo fractional derivative can be decreased substantially (See [7, 11, 14, 15]).

Some improvements and modifications of (2) have been proposed in [1, 3, 4, 5, 6, 13, 16, 23, 24, 26, 27, 28, 29].

The outline of this paper is as follows. In Section 2 we briefly review some important properties of the sine and
cosine diffusive representations (SDR and CDR) to approximate the Caputo fractional derivative. In Section 3, an
efficient matrix approach for SDR and CDR together with some extensions of the matrix approach in order to use
for MTFDEs (1) have been made successfully. Numerical results are given in Section 4. Some concluding remarks
and future works are provided at the end.

2. The sine and cosine diffusive representations

In this section, we briefly review two newly introduced diffusive representations (DRs) for Caputo fractional deriva-
tive which we will name the sine and cosine diffusive representations (SDR and CDR). So we will provide here the
definitions and some related theorems. For more details see [17]. First, it is worthy to address the improved version
of Yuan and Agrawal (YA) diffusive representation [29] for approximating the Caputo fractional derivatives which
proposed by K. Diethelm [8].
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Theorem 2.1 (Improved Yuan and Agrawal approach (YA)). Let α > 0. Then we have:

CDα
0+y(t) =

∫ ∞

0

z2α−2⌈α⌉+1ωY A(z, t) dz,

where

ωY A(z, t) = (−1)⌊α⌋
2 sin(πα)

π

(∫ t

0

e−(t−τ)z2

y(⌈α⌉)(τ) dτ

)
.

It is easy to verify that ωY A(z, t) satisfies the following differential equation:

∂ωY A

∂t
+ z2ωY A = (−1)⌊α⌋

2 sin(πα)

π
y(⌈α⌉)(t), ωY A(z, 0) = 0. (4)

Proof. See [8, 29] for the proof of this theorem. □

Now, we are going to define two new DRs to approximate the Caputo fractional derivative of order 0 < α < 1.

Theorem 2.2 (The cosine diffusive representation (CDR)). For 0 < α < 1, one can see

CDα
0+y(t) =

2 sin(πα2 )

π

∫ ∞

0

zα−1

(∫ t

0

cos ((t− τ)z) y′(τ) dτ

)
dz =

∫ ∞

0

zα−1ωC(z, t) dz, (5)

where

ωC(z, t) =
2 sin(πα2 )

π

(∫ t

0

cos ((t− τ)z) y′(τ) dτ

)
.

We also point out that for a given function y for which its second derivative exists on [0, T ], ωC(z, t) (for fixed
z > 0) satisfies the following second-order differential equation:

∂2ωC

∂t2
+ z2ωC =

2 sin(πα2 )

π
y′′(t),

ωC(z, 0) = 0,
∂

∂t
ωC(z, 0) =

2 sin(πα2 )

π
y′(0).

(6)

Proof. See [17] for the proof of theorem. □

Theorem 2.3 (The sine diffusive representation (SDR)). For 0 < α < 1, we have

CDα
0+y(t) =

2 cos(πα2 )

π

∫ ∞

0

zα−1

(∫ t

0

sin ((t− τ)z) y′(τ) dτ

)
dz =

∫ ∞

0

zαωS(z, t) dz, (7)

where

ωS(z, t) =
2 cos(πα2 )

zπ

(∫ t

0

sin ((t− τ)z) y′(τ) dτ

)
.

It should be noted that for a given function y for which its first derivative exists on [0, T ], ωS(z, t) (for fixed z > 0)
satisfies the following second-order differential equation:

∂2ωS

∂t2
+ z2ωS =

2 cos(πα2 )

π
y′(t),

ωS(z, 0) =
∂

∂t
ωS(z, 0) = 0.

(8)

Proof. For the proof of this theorem see [17]. □

We see that the classical DRs of Caputo fractional derivative are usually coupled with a first-order differential
equation (See the first order differential equation (3)), so from the numerical point of view, it is worthwhile to
convert the second-order differential equations (6) and (8) to the system of first-order differential equations as
follows.

Theorem 2.4. Let 0 < α < 1.
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• For a given function y for which its second derivative exists on [0, T ], and ωC(z, t) = x1(z, t) (for fixed z > 0),
then x1(z, t) satisfies in the following system of first-order differential equations:

∂x1

∂t
= x2(z, t),

∂x2

∂t
= −z2x1(z, t) +

2 sin(πα2 )

π
y′′(t),

x1(z, 0) = 0, x2(z, 0) =
2 sin(πα2 )

π
y′(0).

(9)

• For a given function y for which its first derivative exists on [0, T ], and assume ωS(z, t) = x1(z, t) (for fixed
z > 0), where x1(z, t) satisfies in the following system of first-order differential equations:

∂x1

∂t
= x2(z, t),

∂x2

∂t
= −z2x1(z, t) +

2 cos(πα2 )

π
y′(t),

x1(z, 0) = x2(z, 0) = 0.

(10)

Proof. The proofs are straightforward. □

In the following remark, we summarize some issues related to the mentioned theorems.

Remark 2.5. Some important remarks should be addressed here:

• As it can be seen from Theorems 2.2 and 2.3, the SDR and CDR are both coupled with a second-order
differential equation while the other representations are usually coupled with a first-order differential equation.
But as we stated in Theorem 2.4, the second-order differential equations (6) and (8) can be easily converted
to a system of first-order differential equations (See Theorem 2.4). Thus, the SDR and CDR methods can be
also considered as the classical DRs.

• The second derivative of the given function y(t), which appears in Eq. (6) can be considered as a drawback of
CDR, but, in fact, in application we don’t need to evaluate y′′(t).

The error bound of the YA, CDR and SDR methods is given in the following theorem.

Theorem 2.6. [17] Let 0 < α < 1. If a A-stable one-step implicit method of order p with the step size h < N−2,
(where N is the number of integration points in the generalized Gauss-Laguerre formula) is used for Eqs. (6) and
(8), then the overall error analysis of CDR and SDR approximation formulae satisfies:

• If y(t) ∈ C2[0, T ] and y(0) = y′(0) = 0, then for t ∈ [0, T ], we have (for the CDR method):∣∣∣Rα
C,N,hy(t)

∣∣∣ = O(Nα−2) +O(hp)

∫ 4N

0

e3Tz
2
dz.

• If y(t) ∈ C1[0, T ] and y(0) = 0 then for t ∈ [0, T ], we have (for the SDR method):∣∣∣Rα
S,N,hy(t)

∣∣∣ = O(Nα−1) +O(hp)

∫ 4N

0

e3Tz
2
dz.

Proof. See [17] for the details. □

Theorem 2.7. [8] Let 0 < α < 1 and y(t) ∈ C1[0, T ]. If a A-stable one-step implicit method of order p with
the step size h < N−2 is used for Eq. (4), then the overall error analysis of improved YA approximation formula
satisfies: ∣∣∣Rα

N,hy(t)
∣∣∣ = O(N2α−2) +O(hp)

∫ 4N

0

e3Tz
2
dz,

for t ∈ [0, T ].

Proof. See Theorem 6 of [8]. □
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Figure 1: Error bounds of the three methods YA, CDR and SDR for α ∈ [0, 1] with N = 50 and N = 100.

The error bounds of the improved YA, CDR and SDR methods for α ∈ [0, 1] and N = 50 and N = 100 are plotted
in Fig. 1. This figure obviously states that the convergence rate of the SDR method is very slow, so the following
improved version suggested by the authors of [17].

Theorem 2.8 (The improved sine diffusive representation (ISDR)). For 0 < α < 1, we have

CDα
0+y(t) =

4 cos(πα2 )

π

∫ ∞

0

θ2α−1

(∫ t

0

sin
(
(t− τ)θ2

)
y′(τ) dτ

)
dτ =

∫ ∞

0

θ2α−1ωIS(θ, t) dθ,

where

ωIS(θ, t) =
4 cos(πα2 )

π

(∫ t

0

sin
(
(t− τ)θ2

)
y′(τ) dτ

)
.

Also, for a given function y for which its first derivative exists on [0, T ], ωIS(θ, t) (for fixed θ > 0) satisfies the
following second-order differential equation:

∂2ωIS

∂t2
+ θ4ωIS =

4 cos(πα2 )

π
θ2y′(t),

ωIS(θ, 0) =
∂

∂t
ωIS(θ, 0) = 0.

(11)

Proof. The proof is straightforward. □

The next theorem, gives the error bound of the new improved SDR method.

Theorem 2.9. Let 0 < α < 1. If a A-stable one-step implicit method of order p with the step size h < N−4,
(where N is the number of integration points in the generalized Gauss-Laguerre formula) is used for Eq. (11), then
for y(t) ∈ C1[0, T ], y(0) = 0 and t ∈ [0, T ], we have the overall error analysis of ISDR approximation formula:∣∣∣Rα

IS,N,hy(t)
∣∣∣ = O(N2α−2) +O(hp)

∫ 4N

0

e3Tz
4
dz.

Proof. The proof is obtained by the similar fashion which used for Theorem 2.6. □

Remark 2.10. For stiff differential equations (9), (10), and (11), numerical methods with large regions of absolute
stability are recommended to avoid the need for small step sizes h. In such cases, the backward Euler method is
preferred over the trapezoidal method for solving stiff differential equations [2].

The numerical parts of the newly presented methods CDR and SDR are given in the next section.

3. The numerical part: Matrix approach to solve multi-term fractional differential equation

The main objective of this section is to solve multi-term fractional differential equation (1) by the methods CDR
and SDR. From the numerical analysis point of view, the well-known matrix approach gives an efficient and fast
tool to apply numerical methods to solve various problems.
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3.1. A matrix approach for CDR and SDR methods:

As we aware, one of the most interesting tools, from the numerical analysis viewpoint, to apply the proposed
methods for various problems is to generate their matrix forms. So, we set the target of this section to obtain the
matrix form of the new approximation formulae CDR and SDR to approximate the Caputo fractional derivative of
order α ∈ (0, 1). To do so, we start with the CDR formula. As stated in [17] the CDR formula can be approximated
as:

CDα
0+y(t)

∣∣∣
t=tk

=

∫ ∞

0

zα−1e−z
[
ezωC(z, tk)

]
dz ≈

N∑
i=1

w
(α−1)
i ez

(α−1)
i ωC(r

(α−1)
i , tk), (12)

where r
(α−1)
i and w

(α−1)
i are the Generalized Gauss-Laguerre (G-G-L) nodes and weights associated with the weight

function w(z) = zα−1e−z, respectively.

So, the matrix form of the Caputo fractional derivatives of order α ∈ (0, 1) based on the CDR approximation
formula (12) can be written as follows:

Cy(α) ≈
(
MC

)T
wC ,

where

Cy(α) =


y(α)(t1)
y(α)(t2)

...
y(α)(tn)

, wC =


w

(α−1)
1 er

(α−1)
1

w
(α−1)
2 er

(α−1)
2

...

w
(α−1)
N er

(α−1)
N


T

, MC =


ωC(r

(α−1)
1 , t1) ωC(r

(α−1)
1 , t2) · · · ωC(r

(α−1)
1 , tn)

ωC(r
(α−1)
2 , t1) ωC(r

(α−1)
2 , t2) · · · ωC(r

(α−1)
2 , tn)

...
... · · ·

ωC(r
(α−1)
N , t1) ωC(r

(α−1)
N , t2) · · · ωC(r

(α−1)
N , tn)

 .

Now, it remains to compute the unknown matrix MC . So, we need to evaluate the values ωC(r
(α−1)
i , tk), i =

1, 2, . . . , N , k = 1, 2, . . . , n numerically. So, we are going to use Eq. (9). The mentioned system of differential
equations can get the matrix form as:

CACZ′(t) = CBCZ(t) + CF(t), CZ(0) = Z0, (13)

where matrices CA and CB, and vectors CZ(t) and CF(t) are given as:

CA = I2N×2N , CB =

[
B11 B12

B21 B22

]
2N×2N

, B11 = B22 = [0]N×N , B12 = IN×N ,

and

B21 =


−
[
r
(α−1)
1

]2
0 0

0
. . . 0

0 0 −
[
r
(α−1)
N

]2

N×N

, CZ(t) =



x1(r
(α−1)
1 , t)
...

x1(r
(α−1)
N , t)

x2(r
(α−1)
1 , t)
...

x2(r
(α−1)
N , t)


2N×1

, CF(t) =



0
...
0

2 sin(
πα
2 )

π y′′(t)
...

2 sin(
πα
2 )

π y′′(t)


2N×1

.

We also point out that IN×N stands for the identity matrix.

Now, we face with a first order differential equation (13) in the matrix form. To solve it numerically, various
numerical time integrations such as: rectangular or trapezoidal rules can be performed. So, let t ∈ [0, T ] and h
stands for the step size with:

h =
T

n− 1
, n ∈ N.

Now, we define tk = (k − 1)h, so we have t1 = 0 and tn = T .

Using the rectangular or trapezoidal integration rules we get the well-known backward Euler method:

CZ(ti+1) =
(
CA− hCB

)−1 [CACZ(ti) + hCF(ti+1)
]
, i = 1, 2, . . . , n− 1, (14)

and trapezoidal method:

CZ(ti+1) =

(
CA− h

2
CB

)−1 [(
CA+

h

2
CB

)
CZ(ti) +

h

2

(
CF(ti+1) +

CF(ti)
)]

, i = 1, 2, . . . , n− 1, (15)
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respectively, and subject to the following initial condition:

CZ(0) =



x1(r
(α−1)
1 , 0)
...

x1(r
(α−1)
N , 0)

x2(r
(α−1)
1 , 0)
...

x2(r
(α−1)
N , 0)


2N×1

,

Finally, if we set:
CZ = [Z(t1) Z(t2) . . . Z(tn)]2N×n, (16)

then we have
MC = CZ(1 : N, :).

We also point out that CZ(1 : N, :) stands for the rows 1 to N and all columns of the matrix CZ.

For the SDR method, we use the following formula:

CDα
0+y(t)

∣∣∣
t=tk

=

∫ ∞

0

zαe−z
[
ezωS(z, tk)

]
dz ≈

N∑
i=1

w
(α)
i ez

(α)
i ωS(r

(α)
i , tk),

where r
(α)
i and w

(α)
i are the Generalized Gauss-Laguerre (G-G-L) nodes and weights associated with the weight

function w(z) = zαe−z.

Therefore, the matrix form of the Caputo fractional derivatives of order α ∈ (0, 1) based on the SDR approxi-
mation formula is obtained as follows:

Sy(α) ≈
(
MS

)T
wS ,

where

Sy(α) =


y(α)(t1)
y(α)(t2)

...
y(α)(tn)

 , wS =


w

(α)
1 er

(α)
1

w
(α)
2 er

(α)
2

...

w
(α)
N er

(α)
N


T

, MS =


ωS(r

(α)
1 , t1) ωS(r

(α)
1 , t2) · · · ωS(r

(α)
1 , tn)

ωS(r
(α)
2 , t1) ωS(r

(α)
2 , t2) · · · ωS(r

(α)
2 , tn)

...
... · · ·

ωS(r
(α)
N , t1) ωS(r

(α)
N , t2) · · · ωS(r

(α)
N , tn)

 .

Now, it remains to evaluate the values ωS(r
(α)
i , tk), i = 1, 2, . . . , N, k = 1, 2, . . . , n. As it is observed before, the

function ωS(z, t) satisfies a system of first order differential equations (10).

Similarly, system (10) can be seen as the following matrix form:

SASZ′(t) = SBSZ(t) + SF(t), SZ(0) = 0,

where matrices SA and SB, and vectors SZ(t) and SF(t) are given as:

SA = I2N×2N , SB =

[
B11 B12

B21 B22

]
2N×2N

, B11 = B22 = [0]N×N , B12 = IN×N ,

and

B21 =


−
[
r
(α)
1

]2
0 0

0
. . . 0

0 0 −
[
r
(α)
N

]2

N×N

, SZ(t) =



x1(r
(α)
1 , t)
...

x1(r
(α)
N , t)

x2(r
(α)
1 , t)
...

x2(r
(α)
N , t)


2N×1

, SF(t) =



0
...
0

2 cos(
πα
2 )

π y′(t)
...

2 cos(
πα
2 )

π y′(t)


2N×1

.

Now, using the backward Euler and trapezoidal methods (14) and (15), the matrix SZ which is defined as:

SZ = [Z(t1) Z(t2) . . . Z(tn)]2N×n, (17)
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is obtained. Thus
MS = SZ(1 : N, :).

Due to the fact that many real problems which were modeled by Caputo fractional derivative, contain the Caputo
fractional derivatives of order α ∈ (1, 2). So, our next goal is to extend the approximation formulae CDR and SDR
for the case α ∈ (1, 2).

3.2. Approximation of Caputo fractional derivatives of order α ∈ (1, 2) based on CDR and SDR methods

In various areas of mechanics and engineering we encounter with fractional models of order α ∈ (1, 2). So, it is
essential to extend the CDR and SDR approximation formulae for the mentioned case. For this reason, we present
the following lemma which plays a key role to extend these formulae.

Lemma 3.1. Let n− 1 < α < n ≤ m, m, n ∈ N. If we have

y(s)(0) = 0, s = n, n+ 1, . . . ,m,

then
CDα

0+y
(m)(t) =

dm

dtm
(
CDα

0+y(t)
)
= CDα+m

0+ y(t).

For special case 0 < α < 1 and m = 1, if y′(0) = 0, then we arrive at:

CD1+α
0+ y(t) =

d

dt

(
CDα

0+y(t)
)
.

Proof. See [25] for the details. □

Using the above lemma, the following important theorem can be concluded.

Theorem 3.2. Let 0 < α < 1 and y(0) = y′(0) = 0. Then we have:

CD1+α
0+ y(t) =

∫ ∞

0

zα−1e−z

[
ez

d

dt

[
ωC(z, t)

]]
dz,

and
CD1+α

0+ y(t) =

∫ ∞

0

zαe−z

[
ez

d

dt

[
ωS(z, t)

]]
dz.

Proof. The proof of this theorem can be easily obtained if we differentiate both sides of Eqs. (5) and (7) with
respect to t. □

Theorem 3.3. Let 0 < α < 1 and y(0) = y′(0) = 0. Then the Caputo fractional derivatives of order 1 + α for
which α ∈ (0, 1) based on the extended CDR and SDR methods (which denoted by ECDR and ESDR) are as follows:

ECy(α+1) ≈
(
MEC

)T
wC , ESy(α+1) ≈

(
MES

)T
wS ,

where
MEC = CZ(N + 1 : 2N, :), MES = SZ(N + 1 : 2N, :),

where CZ and SZ are defined in (16) and (17), respectively.

Remark 3.4. The above theorem gives a distinct advantage of the CDR and SDR methods. In fact, when we
solve the systems of first order differential equations (13) and (3.1), numerically, the solutions not only give us the
approximations of Caputo fractional derivative of order α ∈ (0, 1) but also provide the approximations of Caputo
fractional derivative of order 1 + α, α ∈ (0, 1) as well.
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3.3. Matrix approach for multi-term fractional differential equations

The main purpose of this section is to apply the CDR (ECDR), SDR (ESDR) and ISDR methods to solve multi-
term fractional differential equation (MTFDE) (1). For the reason, consider the following MTFDE with constant
coefficients:

my′′(t)+ c1
CD1+β

0+ y(t)+ c2
CDβ

0+y(t)+ c3
CDα

0+y(t)+ ky(t) = f(t), y(0) = y′(0) = 0, 0 < α, β < 1, t ∈ [0, T ], (18)

where m, c1, c2, c3 and k are some real constants. To solve the above MTFDE, we assume that:

t1 = 0, tn = T, ti = (i− 1)h, i = 2, 3, . . . , n− 1, h =
T

n− 1
.

We are going to solve the mentioned system of differential equations by the CDR method. For other methods (SDR,
ISDR), the same fashion can be easily followed.

In order to handle problem (18) numerically, we first convert it into a system of (ordinary and fractional)
differential equations. So, let y′(t) = v(t), then we get:{

y′(t) = v(t),

mv′(t) = f(t)− c1
CD1+β

0+ y(t)− c2
CDβ

0+y(t)− c3
CDα

0+y(t)− ky(t),
y(0) = v(0) = 0. (19)

As it is stated in (12), we have:

CDβ
0+y(t) ≈

N∑
i=1

w
(β−1)
i ez

(β−1)
i x

(β)
1 (r

(β−1)
i , t), (20)

CDβ+1
0+ y(t) ≈

N∑
i=1

w
(β−1)
i ez

(β−1)
i x

(β)
2 (r

(β−1)
i , t), (21)

where r
(β−1)
i and w

(β−1)
i are used for the Gauss-Laguerre nodes and weights associated with the weight function

w(z) = zβ−1e−z and also x
(β)
1 (z, t) and x

(β)
2 (z, t) satisfy the following first order differential equations:

∂x
(β)
1

∂t
= x

(β)
2 (z, t),

∂x
(β)
2

∂t
= −z2x

(β)
1 (z, t) +

2 sin(βπ2 )

π
y′′(t),

x
(β)
1 (z, 0) = x

(β)
2 (z, 0) = 0.

Moreover, we also have:

CDα
0+y(t) ≈

N∑
i=1

w
(α−1)
i ez

(α−1)
i x

(α)
1 (r

(α−1)
i , t), (22)

where r
(α−1)
i and w

(α−1)
i are used for the Gauss-Laguerre nodes and weights associated with the weight function

w(z) = zα−1e−z and also x
(α)
1 (z, t) satisfies the following system of first order differential equations:

∂x
(α)
1

∂t
= x

(α)
2 (z, t),

∂x
(α)
2

∂t
= −z2x

(α)
1 (z, t) +

2 sin(απ2 )

π
y′′(t),

x
(α)
1 (z, 0) = x

(α)
2 (z, 0) = 0.

Substituting approximations (20), (21) and (22) into (19), the following first order differential equation in the matrix
form can be followed:

AZ′(t) = BZ(t) + F(t), Z(0) = Z0, (23)

345



H. Khosravian-Arab et al., AUT J. Math. Comput., 5(4) (2024) 337-359, DOI:10.22060/AJMC.2024.23042.1222

where matrices A and B, and vectors Z(t) and F(t) are given as:

A =


A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55


(4N+2)×(4N+2)

,

where

A11 =

[
1 0
0 m

]
, A12 = A13 = A14 = A15 = [0]2×N ,

A21 = [0]N×2, A22 = IN×N , A23 = A24 = A25 = [0]N×N ,

A31 =


0 − 2 sin(

βπ
2 )

π
...

...

0 − 2 sin(
βπ
2 )

π


N×2

, A32 = [0]N×N , A33 = IN×N , A34 = A35 = [0]N×N ,

A41 = [0]N×2, A42 = A43 = [0]N×N , A44 = IN×N , A45 = [0]N×N ,

A51 =


0 − 2 sin(

πα
2 )

π
...

...

0 − 2 sin(
πα
2 )

π


N×2

, A52 = A53 = A54 = [0]N×N , A55 = IN×N ,

and for matrix B, we arrive at;

B =


B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

B31 B32 B33 B34 B35

B41 B42 B43 B44 B45

B51 B52 B53 B54 B55


(4N+2)×(4N+2)

,

where

B11 =

[
0 1
−k 0

]
, B12 =

[
0 · · · 0

−c2w
(β−1)
1 er

(β−1)
1 · · · −c2w

(β−1)
N er

(β−1)
N

]
2×N

,

B13 =

[
0 · · · 0

−c1w
(β−1)
1 er

(β−1)
1 · · · −c1w

(β−1)
N er

(β−1)
N

]
2×N

,

B14 =

[
0 · · · 0

−c3w
(α−1)
1 er

(α−1)
1 · · · −c3w

(α−1)
N er

(α−1)
N

]
2×N

, B15 = [0]2×N ,

B21 = [0]N×2, B22 = [0]N×N , B23 = IN×N , B24 = B25 = [0]N×N ,

B31 = [0]N×2, B32 =


−
[
r
(β−1)
1

]2
0 0

0
. . . 0

0 0 −
[
r
(β−1)
N

]2

N×N

, B33 = B34 = B35 = [0]N×N ,

B41 = [0]N×2, B42 = B43 = B44 = [0]N×N , B45 = IN×N ,

B51 = [0]N×2, B52 = B53 = [0]N×N , B54 =


−
[
r
(α−1)
1

]2
0 0

0
. . . 0

0 0 −
[
r
(α−1)
N

]2

N×N

, B55 = [0]N×N ,
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and

Z(t) =



y(t)
v(t)

−−−−−
x
(β)
1 (r

(β−1)
1 , t)
...

x
(β)
1 (r

(β−1)
N , t)

−−−−−
x
(β)
2 (r

(β−1)
1 , t)
...

x
(β)
2 (r

(β−1)
N , t)

−−−−−
x
(α)
1 (r

(α−1)
1 , t)
...

x
(α)
1 (r

(α−1)
N , t)

−−−−−
x
(α)
2 (r

(α−1)
1 , t)
...

x
(α)
2 (r

(α−1)
N , t)


(4N+2)×1

, F(t) =



0
f(t)
0
...
0
...
0


(4N+2)×1

, Z0 =



0
0
0
...
0
...
0


(4N+2)×1

.

We also point out that IN×N stands for the identity matrix and where
{
r
(β−1)
i , w

(β−1)
i

}
and

{
r
(α−1)
i , w

(α−1)
i

}
for

i = 1, . . . , N are the Gauss-Laguerre nodes and weights associated with the weight functions w(z) = zβ−1e−z and
w(z) = zα−1e−z, respectively. By the use of the well-known backward Euler and trapezoidal methods as presented
in (14) and (15), the approximate solution of MTFDE (18) is obtained.

4. Numerical results

This section is devoted to verify the obtained theoretical results numerically. So, to have a good comparison, we
split this section into three subsections. In the first subsection, we report the time running of the proposed methods.
In the second subsection, the matrix approach is used to approximate the Caputo fractional derivatives of some
given functions and in the third one, the proposed approach is applied to solve some fractional differential equations,
numerically.

4.1. The CPU times of the new methods

In this section we are going to compare the (CPU) time running of the proposed methods with the classical ones
which are based on the convolution quadrature rules. Thus, especially for 0 < α < 1, two simple and well-known
methods Grünwald-Letnikov (GL):

CDα
0+y(t)

∣∣∣
t=tn+1

≈ 1

hα

n∑
k=1

(−1)k−1

(
α

k − 1

)
y((n− k)h), y(0) = 0, h =

T

n
, tk = (k − 1)h,

and L1

CDα
0+y(t)

∣∣∣
t=tn+1

≈ 1

Γ(2− α)hα

n∑
k=1

[
(n− k + 1)1−α − (n− k)1−α

]
[y(kh)− y((k − 1)h)] ,

have been selected (See [22] for more details).
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Example 4.1. Consider the following functions and their Caputo fractional derivatives [17]:

y(t) = t1.6, CDα
0+y(t) =

Γ(2.6)

Γ(2.6− α)
t1.6−α, α = 0.4, t ∈ [0, 1],

y(t) = t3, CDα
0+y(t) =

Γ(4)

Γ(4− α)
t3−α, α = 0.6, t ∈ [0, 1],

y(t) = sin t, CDα
0+y(t) = t1−α

+∞∑
k=0

(−t)2k

Γ(2k + 2− α)
= t1−αE2,2−α(−t2), α = 0.5, t ∈ [0, 1],

y(t) = t
ν
2 Jν(2

√
t), CDα

0+y(t) = t
ν−α

2 Jν−α(2
√
t), ν = 3, α = 0.5, t ∈ [0, 1],

where Eα,β(z) and Jν(z) are the two-parameter Mittag-Leffler function and the Bessel function of the first kind,
respectively.

Tables 1-4 report the time running of the YA, CDR, SDR, GL, and L1 methods for varying values of n. Large
n values lead to faster growth in CPU time for the classical GL and L1 methods. Furthermore, Fig. 2 depicts the
time running of all the methods.

Finally, we compare the maximum errors of the approximations obtained by the YA, CDR, and SDR methods
together with GL and L1 methods. These results are depicted in Figure 3.

Table 1: The CPU times of the approximations of Caputo fractional derivative of function y(t) = t1.6, t ∈ [0, 1] with α = 0.4 by
the methods GL, L1 and the three methods YA, CDR and SDR (using backward Euler method) versus various values of n with
N = 50, b = 1.

CPU time (Second)

Methods n = 200 n = 500 n = 1000 n = 2000 n = 5000

GL [22] 0.0115 0.0238 0.1475 1.9025 41.0767

L1 [22] 0.0097 0.0533 0.2458 2.3638 41.9368

YA (G-G-L) [8, 9] 0.0113 0.0170 0.0189 0.0298 0.0547

CDR (G-G-L) 0.0395 0.0756 0.1364 0.2776 0.6447

SDR (G-G-L) 0.0340 0.0681 0.1315 0.2531 0.6342

Table 2: The CPU times of the approximations of Caputo fractional derivative of function y(t) = t3, t ∈ [0, 1] with α = 0.6 by
the methods GL, L1 and the three methods YA, CDR and SDR (using backward Euler method) versus various values of n with
N = 50, b = 1.

CPU time (Second)

Methods n = 200 n = 500 n = 1000 n = 2000 n = 5000

GL [22] 0.0138 0.0237 0.1519 1.9302 37.6966

L1 [22] 0.0094 0.0575 0.2473 2.6898 41.7627

YA (G-G-L) [8, 9] 0.0128 0.0153 0.0189 0.0295 0.0545

CDR (G-G-L) 0.0427 0.0711 0.1329 0.2644 0.6345

SDR (G-G-L) 0.0324 0.0702 0.1295 0.2617 0.6351
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Table 3: The CPU times of the approximations of Caputo fractional derivative of function y(t) = sin t, t ∈ [0, 1] with α = 0.5 by
the methods GL, L1 and the three methods YA, CDR and SDR (using backward Euler method) versus various values of n with
N = 50, b = 1.

CPU time (Second)

Methods n = 200 n = 500 n = 1000 n = 2000 n = 5000

GL [22] 0.0083 0.0239 0.1546 1.8655 41.9035

L1 [22] 0.0037 0.0202 0.1142 1.8213 37.7475

YA (G-G-L) [8, 9] 0.0128 0.0171 0.0178 0.0315 0.0580

CDR (G-G-L) 0.0346 0.0830 0.1344 0.2685 0.6498

SDR (G-G-L) 0.0323 0.0869 0.1352 0.2580 0.6409

Table 4: The CPU times of the approximations of Caputo fractional derivative of function y(t) = t
ν
2 Jν(2

√
t), t ∈ [0, 1] with ν = 3, α =

0.5 by the methods GL, L1 and the three methods YA, CDR and SDR (using backward Euler method) versus various values of n with
N = 50, b = 1.

CPU time (Second)

Methods n = 200 n = 500 n = 1000 n = 2000 n = 5000

GL [22] 0.0131 0.0265 0.1493 1.8656 38.6438

L1 [22] 0.0037 0.0265 0.1177 1.8298 38.3127

YA (G-G-L) [8, 9] 0.0135 0.0244 0.0206 0.0329 0.0649

CDR (G-G-L) 0.0390 0.0814 0.1411 0.2766 0.6730

SDR (G-G-L) 0.0329 0.0681 0.1380 0.2625 0.6521
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Figure 2: The CPU times of the approximations of Caputo fractional derivative of two functions obtained by the methods GL, L1 and
the three methods YA, CDR and SDR (using backward Euler method) versus various values of n with N = 50, b = 1.
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Figure 3: The maximum errors of the approximations of Caputo fractional derivative of two functions obtained by the methods GL, L1
and the three methods YA, CDR and SDR (using backward Euler method) versus various values of n with N = 50, b = 1.

Remark 4.1. It is worthy to point out that the error term of the methods YA, CDR, SDR and ISDR consists of
two parts: The first part depends on the quadrature nodes N , and the second part depends on the ODE solver step
size h (See Theorems 2.5, 2.6 and 2.8). Therefore, comparing the DR methods with the classical methods that are
usually dependent only on h is not a valid approach (See Figure 3).

4.2. Approximation of the Caputo fractional derivatives

This subsection is focused on the use of the proposed approach to approximate the Caputo fractional derivatives
based on the CDR, SDR and ISDR methods. To due so, we proceed with the following example.

Example 4.2. Consider the following functions [17]:

y(t) = t1.6, CDα
0+y(t) =

Γ(2.6)

Γ(2.6− α)
t1.6−α, α = 0.4, t ∈ [0, 1],

y(t) = t3, CDα
0+y(t) =

Γ(4)

Γ(4− α)
t3−α, α = 0.6, t ∈ [0, 1],

y(t) = sin t, CDα
0+y(t) = t1−α

+∞∑
k=0

(−t)2k

Γ(2k + 2− α)
= t1−αE2,2−α(−t2), α = 0.5, t ∈ [0, 1],

y(t) = t
ν
2 Jν(2

√
t), CDα

0+y(t) = t
ν−α

2 Jν−α(2
√
t), ν = 3, α = 0.5, t ∈ [0, 1],

where Eα,β(z) and Jν(z) are the two-parameter Mittag-Leffler function and the Bessel function of the first kind,
respectively.

Relative errors obtained by the methods YA, CDR, SDR and ISDR for N = 50, n = 104 have been reported in
Fig. 4.

In real word problems, we usually face with the problems with long domains (t >> 1). So, our next aim is
to examine the four methods improved YA, CDR, SDR and ISDR for the mentioned problems (with long domains
t > 1). Numerical results obtained by the four methods on domain t ∈ [0, 50] are plotted in Fig. 5. It can be easily
observed from this figure that the methods CDR, SDR and ISDR for t > 5 may lead to inaccurate results.
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Figure 4: Relative errors obtained by four methods improved YA, CDR, SDR and ISDR with n = 104 and N = 50.

In what follows, a simple and useful idea to improve the accuracy of the obtained results for large values of t is
suggested. The idea which can be used here is based on the change of variable:

z =
θ

b
, θ ∈ [0, b].

Numerical results obtained by the methods CDR, SDR and ISDR on domain t ∈ [0, 50] after using the mentioned
change of variable are plotted in Fig. 6. It can be observed from this figure that the accuracy of the obtained
results by three methods CDR, SDR and ISDR using the mentioned change of variable is in good agreement with
the analytical solution.
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Figure 5: Numerical solutions obtained by four methods YA, CDR, SDR and ISDR (without the change of variable) with n = 104 and
N = 50 on [0, 50].
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Figure 6: Numerical solutions obtained by four methods YA, CDR, SDR and ISDR (using the change of variable) with n = 104 and
N = 50 on [0, 50].
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4.3. Multi-term fractional differential equations

In this subsection, the proposed numerical methods have testified with some examples. So, to have a good com-
parison, the methods CDR, SDR and ISDR are compared with improved Yuan and Agrawal method (YA). It is
worthy to point out that the trapezoidal method is carried out to solve system of first order differential equations
(23).

Example 4.3. For the first example we consider the following MTFDE:

my′′(t) + c1
CD1+β

0+ y(t) + c2
CDβ

0+y(t) + c3
CDα

0+y(t) + ky(t) = f(t), y(0) = y′(0) = 0, 0 < α, β < 1, t ∈ [0, 3],

with various values of the parameters m, c1, c2, c3 and k with the exact solution y(t) = t3. For the reader’s
convenience, we consider the following cases for the unknown parameters:

1. For the first case, consider m = k = 1 and c1 = c2 = c3 = 0, then we obtain the following ordinary differential
equation:

y′′(t) + y(t) = f(t), y(0) = y′(0) = 0, t ∈ [0, 3].

2. For the second case, the use of m = k = 1, c1 = c2 = 0, c3 = 1 and α = 0.5, yields the following fractional
differential equation:

y′′(t) + CD0.5
0+ y(t) + y(t) = f(t), y(0) = y′(0) = 0, t ∈ [0, 3].

3. For the third case, selecting m = k = 1, c1 = 1, c2 = c3 = 0 and β = 0.5, concludes the following fractional
differential equation:

y′′(t) + CD1.5
0+ y(t) + y(t) = f(t), y(0) = y′(0) = 0, t ∈ [0, 3].

4. For the fourth case, having m = k = 1, c1 = c2 = 1, c3 = 0 and β = 0.5, gives the following fractional
differential equation:

y′′(t) + CD1.5
0+ y(t) + CD0.5

0+ y(t) + y(t) = f(t), y(0) = y′(0) = 0, t ∈ [0, 3].

5. For the fifth case, consider m = k = 1, c1 = c2 = c3 = 1 and β = 0.75, α = 0.5, then we have the following
fractional differential equation:

y′′(t) + CD1.75
0+ y(t) + CD0.75

0+ y(t) + CD0.5
0+ y(t) + y(t) = f(t), y(0) = y′(0) = 0, t ∈ [0, 3].

6. For the sixth case, consider m = 0, k = 1, c1 = 1, c2 = c3 = 0 and β = 0.75, then we have the following
fractional differential equation:

CD1.75
0+ y(t) + y(t) = f(t), y(0) = y′(0) = 0, t ∈ [0, 3].

Relative errors of the approximate solutions of the mentioned cases obtained by YA, CDR, SDR and ISDR methods
(without the change of variable) by the trapezoidal method for n = 104 together with the N = 50-points generalized
Gauss-Laguerre quadrature rule are plotted in Fig. 7.
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Figure 7: Relative errors obtained by four methods improved YA, CDR, SDR and ISDR (without the change of variable) with n = 104

and N = 50.

Example 4.4. For the second example, consider the following fractional relaxation-oscillation equation [25, 19]:

CD1+β
0+ y(t) + ky(t) = 1, y(0) = y′(0) = 0, 0 < β ≤ 1.

The analytical solution of this problem is given as:

y(t) = tµEµ,µ+1(−ktµ), µ = 1 + β,

where Eα,β(z) is the Mittag–Leffler function which is defined by the power series [25]:

Eα,β(z) =

+∞∑
k=0

zk

Γ(αk + β)
, α, β > 0.

Numerical solutions of this problem using the methods YA, CDR, SDR and ISDR (without using the change of
variable) for µ = 1.25, 1.5, 1.75, 1.95 are depicted in Fig. 8. The improved results after using the change of
variable are also plotted in Fig. 9. It can be clearly observed from these figures that the use of newly introduced
change of variable can substantially improve the accuracy of numerical results.
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Figure 8: Relative errors obtained by four methods improved YA, CDR, SDR and ISDR (without using change of variable) with n = 104

and N = 50.
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Figure 9: Relative errors obtained by four methods improved YA, CDR, SDR and ISDR (using change of variable) with n = 104 and
N = 50.
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Example 4.5 (Bagley-Torvic equation). For the last example, we consider one of the most well-known frac-
tional differential equations as called the Bagley-Torvic equation [10, 12, 25].

Ay′′(x) +B CDβ
0+y(x) + Cy(x) = f(x), 1 < β < 2, y(0) = y′(0) = 0. (24)

In fact, the motion of an immersed plate in a non-Newtonian fluid can be modeled by (24). So, consider a rigid
plate of mass M with area S, which is sufficiently large, immersed into an infinite non-Newtonian fluid as shown
in Fig. 10 and connected by a massless spring of stiffness K. We also assume that a force f(x) applied to the plate.
It is also assumed that the spring motions do not disturb fluid.

This problem is solved numerically with A = 1, B = C = 0.5 and for

f(x) =

{
8 0 < x < 1

0 x ≥ 1

and different values of β by four methods improved YA, CDR, SDR and ISDR using the new change of variable.
All results are shown in Fig. 11. It should be observed from this figure that, the use of change of variable may lead
to get accurate results.

Figure 10: An immersed plate in a Non-Newtonian fluid for Example 4.5 [18].
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Figure 11: Numerical solutions obtained by four methods YA, CDR, SDR and ISDR (using change of variable) with n = 104 and
N = 50.

5. Concluding remarks and future works

This paper is, in fact, a continuation of the recent work of the authors [17] to approximate the Caputo fractional
derivative using two new diffusive representations (CDR and SDR). In the current paper, a matrix approach is
introduced to apply the CDR and SDR (and its improvement which is denoted by ISDR) for approximation of the
Caputo fractional derivatives of order α ∈ (0, 1). Then we extend the methods CDR and SDR for α ∈ (1, 2). At the
end, a unified matrix approach to solve a linear multi-term fractional differential equation with constant coefficients
is introduced. Some test examples are provided to verify the validity and accuracy of the proposed approach.

In the following, some future works are provided:

1. The first suggestion, is to use of CDR, SDR and ISDR for other problems such as fractional optimal control
problems, fractional calculus of variations and fractional partial(-integro) differential equations.

2. As we stated in Example 4.2, the CDR and SDR (and thus ISDR) methods for large values of t can not work
properly. In the current paper a simple idea (which is based on a change of variable) is carried out to overcome
this difficulty. So, our second suggestion is to propose other ideas for CDR and SDR methods to get more
accurate results.

3. The last suggestion is to introduce some new modifications and improvements of the CDR and SDR methods
to obtain other fast and accurate numerical methods to approximate the Caputo fractional derivative based
on the approaches of the papers [4, 6, 7, 8, 9, 11, 23].
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