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ABSTRACT: Feature extraction plays a crucial role in dimensionality reduction
in machine learning applications. Nonnegative Matrix Factorization (NMF) has
emerged as a powerful technique for dimensionality reduction; however, its equal
treatment of all features may limit accuracy. To address this challenge, this paper
introduces Graph-Regularized Entropy-Weighted Nonnegative Matrix Factorization
(GEWNMF) for enhanced feature representation. The proposed method improves
feature extraction through two key innovations: optimizable feature weights and
graph regularization. GEWNMF uses optimizable weights to prioritize the extrac-
tion of crucial features that best describe the underlying data structure. These
weights, determined using entropy measures, ensure a diverse selection of features,
thereby enhancing the fidelity of the data representation. This adaptive weighting
not only improves interpretability but also strengthens the model against noisy or
outlier-prone datasets. Furthermore, GEWNMF integrates robust graph regulariza-
tion techniques to preserve local data relationships. By constructing an adjacency
graph that captures these relationships, the method enhances its ability to discern
meaningful patterns amid noise and variability. This regularization not only stabi-
lizes the method but also ensures that nearby data points appropriately influence
feature extraction. Thus, GEWNMF produces representations that capture both
global trends and local nuances, making it applicable across various domains. Ex-
tensive experiments on four widely used datasets validate the efficacy of GEWNMF
compared to existing methods, demonstrating its superior performance in capturing
meaningful data patterns and enhancing interpretability.
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1. Introduction

The advancement of technology and the proliferation of social networks have led to the generation of high-
dimensional data. Often, this data contains extraneous information or noise, which can hinder data mining and
analysis techniques. Dimensionality reduction involves decreasing the number of variables under consideration,
either by identifying a set of principal variables or by transforming the original variables into a new set. Among the
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methods for dimensionality reduction, matrix factorization has garnered considerable attention due to its strong
mathematical foundations and interpretability.

NMF is a type of matrix factorization that restricts its components to non-negative elements. It approximates a
non-negative data matrix by decomposing it into the product of two matrices. For instance, when applied to images
of people’s faces, NMF can identify key facial features such as eyes, lips, nose, and eyebrows [5]. Consequently,
this method has found extensive use in various domains, including image analysis, pattern recognition, medical
applications, and text classification.

NMF and its variants perform well in numerous fields and offer several advantages: 1) the implementation
process of NMF is simple; 2) the factorization results of NMF are interpretable; and 3) it reduces storage space
requirements. However, they also have some limitations. First, NMF-based methods often overlook the local
geometric structure of the data, leading to feature representations that lack sufficient discriminative information.
Second, many rely on Euclidean distance in the objective function, which is not robust to noise and outliers,
resulting in poor generalization and less effective feature representation.

To address the aforementioned deficiencies, numerous enhancements to NMF have been proposed. Ding et al.
[8] first presented the Semi-NMF method, in which the data and basis matrices could have negative entries. They
then introduced the convex method [13, 26], in which the basis matrix is a convex combination of the data matrix.
Recognizing that orthogonality constraints lead to sparsity, Ding et al. added orthogonality constraints to the base
and representation matrices and proposed an orthogonal NMF (ONMF) method [9]. To enhance NMF’s robustness
to noise, Gao et al. [11] suggested using the capped norm for the objective function and applying a threshold to
remove outliers. Similarly, Guan et al. [12] proposed the truncated Cauchy NMF method, which manages outliers
by truncating large errors, thereby learning subspaces on datasets affected by significant noise or corruption.

Ma et al. [23] introduced layer-specific NMF (LSNMF) for multi-layer networks, implementing an orthogonality
constraint on certain components to ensure feature vertex specificity. Dong et al. [10] proposed a method that
sparsifies with the L2,log-(pseudo) norm to efficiently generate sparse solutions, obtain a better part-based rep-
resentation, and enhance its robustness and applicability in complex noisy scenarios. Wei et al. [31] developed
Entropy-Weighted Nonnegative Matrix Factorization (EWNMF) to reduce the impact of noise and outliers, using
a weighting mechanism via the objective function of each sample.

Cai et al. [4] created a graph regularization constraint to learn the local structures of data and applied mani-
fold learning, leading to the development of Graph Regularization NMF (GNMF). GNMF includes various graph
construction methods, such as dot-product weighting, heat kernel weighting, and binary weighting. Huang et al.
[16] reported L2,1-NMF with Adaptive Neighbors (L2,1-NMFAN) by integrating L2,1-NMF and an adaptive local
structure learning strategy [24]. This method can learn the similarity between data while decomposing the matrix,
thereby mining a high-quality spatial network.

Deng et al. [7] used the L1-norm and developed a graph-regularized sparse NMF (GSNMF) by integrating
this norm with graph regularization. Additionally, Deng et al. [6] created tri-regularized NMTF (TRNMTF) by
combining the Frobenius norm, graph regularization, and L1-norm into a single framework. Hamza and Brady
[14] proposed the L1 + L2 function to construct the cost function of NMF, but the solving algorithm is very
time-consuming.

Huang et al. [15] introduced robust graph-regularized NMF (RGNMF) to mitigate the impact of noise and
outliers. This method manages corrupted data by incorporating an error matrix and combining robust graph
regularization with the L1-norm. Robust structure NMF (RSNMF) was proposed by Huang et al. [17] to include
both global and local structure learning, applying the L2,1-norm to the basis matrix.

The aforementioned methods typically outperform standard NMF, but their effectiveness is sensitive to the
regularization parameters and the quality of the adjacency graph. To address this issue, Ahmed et al. [1] proposed
neighborhood structure-assisted NMF (NSNMF), which uses the minimum spanning tree (MST) to construct a
sparse similarity matrix.

Recently, to obtain more discriminative feature representations, semi-supervised methods have been explored.
For example, Wu et al. [32] developed positive and negative label-driven NMF (PNLD-NMF) by incorporating
both positive and negative labels. Jia et al. [18] constructed a similarity matrix and a dissimilarity matrix based on
labeled and unlabeled samples and proposed semi-supervised NMF (SNMF), which forms a pair of complementary
regularization terms integrated into NMF. Additionally, Wu et al. [33] proposed dual embedding regularized NMF
(DENMF), which jointly learns low-dimensional representations and an assignment matrix.

Most studies assign equal importance to all features of the data points. However, some researchers have rec-
ognized the varying significance of different features. Blondel et al. [2] introduced predetermined weights for each
attribute of every data point, demonstrating that these weights can significantly enhance flexibility by emphasizing
certain features in image approximation problems. Building on this, Kim and Choi [19] proposed a new Weighted
Nonnegative Matrix Factorization (WNMF) method to handle incomplete data matrices with missing entries, in-
corporating binary weights into the NMF multiplication update. Wang et al. [29] developed a WNMF method that
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assigns the weight of a data point as the product of column and row weights. These methods are referred to as
”hard WNMF”; however, a major limitation is the need for predetermined weights.

Chen et al. [5] proposed a novel NMF that incorporates a transformation matrix and a graph regularization
term to project samples into a subspace and learn the data manifold. They employed the constrained Laplacian
rank algorithm to address these issues. The cost function includes two weighted matrices, and a complex algorithm
is used to determine the weights, resulting in high algorithmic complexity.

This article introduces the Graph Regularized Entropy Weighted NMF (GEWNMF) method. This approach not
only preserves the global structure through NMF but also utilizes optimizable weights to determine the importance
of the extracted features, leading to the extraction of more significant features from the data space. Entropy is
employed to enhance the likelihood of various features being represented in the new data space. To maintain the
local structure of the data, a robust graph is used, improving the method’s resilience to noise and extreme outliers.
The main contributions of this paper are highlighted as follows:

• The proposed GEWNMF integrates dimensionality reduction, Laplacian regularization, and local structure
preservation into a unified model that simultaneously learns both feature representation and graph structure.
This approach addresses the limitations associated with pre-defined graph structures in feature extraction.

• A novel weighted nonnegative matrix factorization (WNMF) method, incorporating an entropy term, is used
to enhance the representation of diverse features within the new data space.

• An adjacency graph with an optimal number of neighbors, designed to be robust against noise, is employed
to effectively preserve the local structure.

• An iterative updating algorithm has been developed to optimize GEWNMF. The convergence of this algorithm
is confirmed through both theoretical analysis and numerical experiments. The effectiveness of the proposed
GEWNMF has been validated on four well-known datasets.

The remainder of this paper is organized as follows. Section 2 provides an overview of related work. Section
3 introduces the proposed GEWNMF framework, discusses the optimization algorithm, and details the algorithm
updates. Section 4 assesses the performance of GEWNMF through extensive experimental results. Finally, Section
5 presents conclusions and suggests directions for future research.

2. Related works

In this section, research related to our proposed algorithm is introduced. Before discussing the formulation of
various methods, the symbols used in this article are presented.

2.1. Notations

For an arbitrary matrix A ∈ Rm×n, Aij denotes the i, j entry of A, while Ai: and A:j represent the ith row and jth
column of A, respectively. Let the sum of the entries of A be denoted by ∥A∥⋄ =

∑
i,j Aij . The Hadamard product

A⊙B yields a matrix with entries defined as (A⊙B)ij = AijBij . The trace of a square matrix A is represented by
Tr(A) and Ik is the k × k matrix known as the identity. The Euclidean norm of x = (x1, . . . , xn)

⊤ ∈ Rn is defined
by ∥x∥ = (

∑n
i=1 x

2
i )

1/2, and this notation is also applicable to row vectors. The vector 1 is a column vector with all
entries equal to 1. The Frobenius norm of A is defined by ∥A∥F = (

∑n
i=1 ∥Ai:∥2)1/2, with ∥A∥2F = Tr(AA⊤). We

employ the notation Rm×n
+ to denote the space of m× n nonnegative matrices. Given a data set {x1,x2, . . . ,xm},

the notation X = [x1;x2; . . . ;xm] = [f1,f2, . . . ,fn] ∈ Rm×n
+ represents the data matrix, n signifies the number of

samples and m denotes the number of features.

2.2. Nonnegative matrix factorization

Nonnegative Matrix Factorization (NMF) is a method that captures low-dimensional representations and reveals
hidden structures and patterns in data. As a representative dimensionality reduction approach, NMF effectively
addresses the curse of dimensionality problem [30]. First, we review the standard NMF methodology. The NMF
expression is given by:

X ≈ UV,

where X ∈ Rm×n
+ is a data matrix, with columns representing samples and rows representing features. The goal

of NMF is to find two matrices, U ∈ Rm×k
+ and V ∈ Rk×n

+ , called the basis matrix and the representation matrix,
respectively, such that they can approximate X well, where k ≪ min{m,n}.
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Frobenius norm and Kullback–Leibler divergence are often utilized to solve low-rank matrices [20]. The opti-
mization problem based on Frobenius norm is:

minF1(U, V ) ≡ ∥X − UV ∥2F s.t. U ≥ 0, V ≥ 0. (1)

The multiplicative iterative algorithm is widely applied to solve (1), and the variables U and V can be updated
using the following rules:

U ← U ⊙ XV ⊤

UV V ⊤ , V ← V ⊙ U⊤X

U⊤UV
, (2)

where the division is performed in an element-wise manner as well [29].

2.3. Weighted nonnegative matrix factorization

Nonnegative Matrix Factorization places equal importance on all features of data points. Therefore, some researchers
have addressed the varying importance of these features. This led to the introduction of Weighted Nonnegative
Matrix Factorization (WNMF), first proposed in [25] for the weighted Euclidean distance. Several algorithms,
including Newton-related methods, have been used to solve this problem, but they tend to have high complexity.
Simpler algorithms were introduced with the help of Lee and Seung’s algorithm [20]. The WNMF problem, aiming
to minimize the objective function:

F2(U, V ) = ∥X − UV ∥2W =
∑
i,j

[W ⊙ (X − UV )⊙ (X − UV )]ij ,

where W ∈ Rm×n
+ is a given weight matrix. The update rules for U and V are as follows [31]:

U ← U ⊙ (W ⊙X)V ⊤

(W ⊙ [UV ])V ⊤ , V ← V ⊙ U⊤(W ⊙X)

U⊤(W ⊙ [UV ])
.

The use of WNMF emphasizes learning specific parts of the data space.

2.4. Graph-regularized nonnegative matrix factorization

NMF aims to find two nonnegative matrices whose product provides a good approximation to the original matrix,
and the NMF algorithm is proposed to learn the parts of objects, such as human faces and text documents [20].
However, it fails to consider the geometrical structure of the data space, which is essential for data clustering and
classification problems. To overcome this limitation of NMF, an algorithm called Graph Regularized Nonnegative
Matrix Factorization (GNMF) was proposed [4]. GNMF encodes the geometrical information of the data space by
constructing a nearest neighbor graph. The goal is to ensure that if two samples are connected in the neighbor
graph, they are close to each other in the new representation. The objective function of GNMF is as follows:

∥X − UV ∥2F + αTr(V LV ⊤).

Here, the matrix L is called the graph Laplacian and defined as L = D − G, where D is a diagonal matrix with
entries that are the column or row sums of G, specifically Dii =

∑
j Gij . The matrix G is a weight matrix and can

be defined in different ways. One common method, which has been used in most articles, is as follows:

Gij =

{
1 xi ∈ Np(xj) or xj ∈ Np(xi)

0 otherwise

where Np(xi) denotes the set of p-nearest neighbors of xi. This method of constructing a neighborhood graph is
called binary weighting. In addition, there are other methods for making graphs, such as heat kernel weighting and
dot product weighting [21].

2.5. Methods for constructing neighborhood graphs

In this section, alternative methods for constructing the neighborhood graph are presented. These methods not
only improve the learning of local structures but are also resistant to noise. Various exceptional adaptive strategies
for learning local structures have been proposed to enhance clustering performance in resulting methods [24].

Lotfi et al. [22] utilize a fuzzy neighborhood measure to calculate local density values. Their approach involves
clustering data through three primary steps: identifying cluster centers, constructing backbones, and assigning
labels. Zhang et al. [35] anticipated that enhancing the detail and comprehensiveness of the graph could improve
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the performance of NMF. To address this, they introduced a graph regularizer based on a linear projection of the
rating matrix, resulting in a method they named Linear Projection and Graph Regularized Nonnegative Matrix
Factorization (LPGNMF).

By defining the adaptive deep graph convolution method, Wu et al. [34] tried to maintain the local structure
of space with the help of neural networks. They introduce an adaptive deep graph convolution method that
incorporates the adaptive aggregation of local high-order neighborhoods, as opposed to the traditional approach of
stacking single-order convolutional layers within the message-passing framework.

In recent years, methods such as LLSRFS [28] and MVSC [36], each with distinct characteristics, have attempted
to learn local graph structures. Most of these approaches typically rely on information from a single data point.
This makes it straightforward to form an inaccurate local structure graph in a data setting that includes outliers
or noise. In fact, each individual data point should not possess a consistent number of neighbors [37]. The closer a
data point is to a cluster, the higher the number of neighbors it has.

An advanced and intuitive method for constructing a neighborhood graph was proposed in [27], in which
each point can have a unique number of neighbors according to its specific geometrical position. It preserves local
structure and noise resistance with much lower computational cost than neural networks and with optimal accuracy.

The important issue is that, by setting different thresholds for the neighborhood, adaptive local structure
learning strategies with varying robustness can be obtained.

3. Proposed framework

This section introduces the proposed method and its associated problem formulation, providing a detailed exposition
of the methodological approach and the problem statement to facilitate comprehensive understanding.

3.1. Entropy-weighted nonnegative matrix factorization

The main goal of this research is to reduce the dimensions of the data while maintaining its global structure, which
can be achieved using NMF. To differentiate between the values of different data features, we employ the WNMF
algorithm, which gives rise to the following optimization problem:

min ∥X − UV ∥2W

s.t. U ≥ 0, V ≥ 0,W ≥ 0,

m∑
i=1

Wij = 1.
(3)

For fixed matrices U and V , determining Wij is straightforward: Define E = X − UV , then Wij = 1 if |Eij | =
min{|E1j |, . . . , |Emj |}, otherwise Wij = 0. This approach highlights that each column of W has only one element
as 1 and the rest as 0, which simplifies the problem but may not fully address the real-world problem. To mitigate
this issue, we introduce an entropy regularizer in the cost function, aiming to constrain weights to the range [0, 1]
rather than strictly 0 or 1. This approach utilizes information entropy to quantify the uncertainty associated with
weights. The updated optimization problem is formulated as follows:

min ∥X − UV ∥2W + α∥W ⊙ LW∥⋄

s.t. U ≥ 0, V ≥ 0,W ≥ 0,

m∑
i=1

Wij = 1,
(4)

where LW ∈ Rm×n is a matrix defined such that [LW]ij = ln(Wij), and α ≥ 0 is a specified hyperparameter. The
first term in (4), similar to (3), represents the sum of weighted errors, while the second term corresponds to the
negative entropy of the weights. Entropy, in theory, measures the level of disorder or randomness in the system.
Minimizing the second term in the objective function suggests maximizing the dimensionality of feature extraction.
The original objective function in (3) limits each data point to a single attribute for feature representation, whereas
the entropy regularizer encourages the inclusion of more attributes to enhance feature representation.

All available methods must be employed to craft an appropriate low-dimensional data representation. Utilizing
information about the local data structure, facilitated by the GNMF algorithm, is one such method. Integrating
the Laplacian term into GNMF Algorithm enables leveraging inherent geometric relationships between data points,
thereby enhancing the quality of representation. The resulting optimization problem is formulated as follows:

min ∥X − UV ∥2W + α∥W ⊙ LW∥⋄ + βTr(V LV ⊤)

s.t. U ≥ 0, V ≥ 0,W ≥ 0,

m∑
i=1

Wij = 1,
(5)

where, as mentioned in Section 2.4, L is the graph Laplacian matrix.
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3.2. Local structure graph

One innovation of this research is the utilization of the optimal neighborhood graph. As discussed in Section 2.5,
when employing the GNMF algorithm, instead of the conventional neighborhood graph, we utilize a graph with
optimal neighbors, resulting in improved noise robustness and structure preservation. One approach to constructing
such a neighborhood graph involves using a global neighborhood threshold determined by the geometry of the data
space, which is employed for neighbor detection.

In accordance with the findings presented in [27], we construct the optimal local structure graph S ∈ Rn×n
+ . In

particular, we initially establish dij = ∥xi − xj∥2, and arrange the set {di1, . . . , din} in ascending order. Secondly,
unlike the conventional local structure learning approach that assigns an individual threshold for each node, we
introduce a global threshold εp = 1

n

∑n
i=1 di,p+2, where p is a parameter that controls the sparsity of S. Subse-

quently, we specify that only the pairs of nodes (xi,xj) for which the resulting value dij is less than the threshold
εp are eligible to become neighbors, i.e., Sij = 0 if dij ≥ εp, and Sij > 0 otherwise. Here, the matrix H is defined
as Hij = dij − εp. Then, the following strategy for learning an optimal local structure graph is introduced:

min
S≥0
∥H ⊙ S∥⋄ + η∥S∥2F , (6)

where the second term acts as a regularization, with η ≥ 0 serving as a flexible parameter to control the density
of the optimal graph S. Some implicit conditions, such as

∑n
j=1 Sij = 1 and Sij ≥ 0, are implied by this problem.

Based on these constraints, we partition problem (6) into n subproblems, each corresponding to an individual
sample. Subsequently, to address each of these subproblems, we construct the Lagrangian function as follows:

Li(Si:, τ,βi) =
1

2

∥∥∥∥Si: +
1

2ηi
Hi:

∥∥∥∥2 − τ(Si:1− 1)− Si:βi,

where τ ≥ 0 and βi ≥ 0 are the Lagrangian multipliers. Applying the Karush-Kuhn-Tucker (KKT) conditions, the
solution to the corresponding subproblem can be determined as Sij = max(−Hij/(2ηi)+ τ, 0). As indicated in [24],
if the optimal Si: consist of only p nonzero elements, the multiplier τ and the parameter ηi can be derived. For
computational convenience, the overall parameter η can be set as the mean of η1, η2, . . . , ηn, denoted as:

η =
1

n

n∑
i=1

p

2
di,p+2 −

1

2

p+1∑
j=2

dij

 =
p

2
εp −

1

2n

n∑
i=1

p+1∑
j=2

dij .

Certainly, this adjustment to the optimal graph S can also be achieved by assigning probabilistic interpretations,
such that 1

n

∑n
i=1

∑p+1
j=2 Sij ≈ 1. Ultimately, the solution to optimization problem (6) is attained through

Sij = max

(
εp − dij

2η
, 0

)
. (7)

The neighborhood matrix S, formed in this manner, lacks symmetry. Therefore, we employ the matrix G, obtained
by G = (S + S⊤)/2, and then construct the Laplacian matrix as LS = D −G.

As stated in [27], the optimal graph strategy (6) exhibits notable robustness against outliers. Testing this
concept involves evaluating the effectiveness of the suggested robust optimal local structure learning approach (6)
using a synthetic dataset with three data clusters distributed on separate arcs, including an outlier. The k-NN
strategy is designated as the control group. Figure 1 presents specific results, indicating that only equation (6)
accurately constructs the spatial network of non-outliers. Conversely, k-NN fails to correctly identify the spatial
structure under the influence of an outlier.

3.3. Objective function

In this manner, in addition to the objective function of the optimization problem (5), the objective function derived
for the introduced method, utilizing the proposed graph, is expressed as follows:

F (U, V,W, S) =
1

2
∥X − UV ∥2W + α∥W ⊙ LW∥⋄ +

β

2
Tr(V LSV

⊤) + γ
(
∥H ⊙ S∥⋄ + η∥S∥2F

)
. (8)

In this context, positive balancing parameters, denoted as α, β, and γ, play a pivotal role as weighting factors within
the objective function. These parameters intricately influence the trade-offs between various components of the
optimization problem, allowing for fine-tuning and customization of the model’s behavior. The derived objective
function, along with the associated constraints, constitutes the following optimization problem:

min F (U, V,W, S) s.t. U ≥ 0, V ≥ 0,W ≥ 0,

m∑
i=1

Wij = 1. (9)
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Figure 1: Comparison of robustness in optimal local structure learning strategies

Upon solving the optimization problem, we obtain the matrices U and V . Subsequently, using the relation Xnew =
UV , we derive a new representation of the data matrix, which is more compact and contains more useful information.

3.4. Optimization algorithm

In optimization problems like (9), where the objective function involves multiple variables, simultaneous optimiza-
tion of all variables is necessary but can be computationally impractical. In such cases, an effective method is to
optimize one variable at a time while keeping the others fixed, repeating this process until convergence is reached
and no further improvement in the objective function is possible.

The variable S, which appears in the third and fourth terms of the objective function, is the first variable we
will discuss. Initially, we determine the parameter p to construct the S matrix using (7). Consequently, the variable
S will be treated as constant in the subsequent discussion, and we will temporarily omit the fourth term in the
objective function. With the matrix S fixed, attention now shifts to updating other model variables within the
objective function (8). As is customary, we commence the procedure by constructing the Lagrangian corresponding
to the optimization problem (9), introducing the Lagrange multipliers Φ, Ψ, Ω, and Λ as follows:

L (U, V,W,Φ,Ψ,Ω,Λ) = F (U, V,W, S) + Tr(ΦU⊤) + Tr(ΨV ⊤) + Tr(ΩW⊤) + Tr(Λ⊙ Z⊤).

Here, Λ and Z are same order diagonal matrices with diagonal entries Λjj = λj and Zjj =
∑m

i=1 Wij − 1. Critical
points of the Lagrangian L correspond to critical points of the optimization problem (9). Given that the objective
and constraint functions have continuous first partial derivatives in (9), we apply the gradient form of the KKT
Theorem as outlined below:

∇F (U, V,W, S) +∇Tr(ΦU⊤) +∇Tr(ΨV ⊤) +∇Tr(ΩW⊤) +∇Tr(Λ⊙ Z⊤) = 0,

Φ⊙ U = 0, Ψ⊙ V = 0, Ω⊙W = 0, Λ⊙ Z = 0, Φ,Ψ,Ω,Λ ≥ 0.
(10)

By the KKT conditions (10), a minimizer (U, V,W ) must satisfy

W ⊙ (X − UV )(0− V ⊤) = Φ,

(0− U⊤)W ⊙ (X − UV ) + βV LS = Ψ,

∇WF (U, V,W, S) +∇WTr(ΩW⊤) +∇WTr(Λ⊙ Z⊤) = 0,

Φ⊙ U = 0, Ψ⊙ V = 0, Ω⊙W = 0, Λ⊙ Z = 0, Φ,Ψ,Ω,Λ ≥ 0.

(11)

By using the first and second equations in (11) and noting that LS = D −G, the updating rules for U and V are
derived as follows:

U ← U ⊙ (W ⊙X)V ⊤

(W ⊙ [UV ]V ⊤)
, (12)

V ← V ⊙ U⊤(W ⊙X) + βV G

U⊤(W ⊙ UV ) + βV D
. (13)

Given the matrices U and V , W in the third equation in (11) is a minimizer when

m∑
i=1

Wij − 1 = 0, [(X − UV )⊙ (X − UV )]ij + α lnWij + α = λj .
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By solving these two equations for W and eliminating the multiplier λj , the result is as follows:

Wij =
exp

(
− 1

α (Xij − [UV ]ij)
2
)∑m

ℓ=1 exp
(
− 1

α (Xℓj − [UV ]ℓj)2
) . (14)

The detailed iterative updating procedures are provided in Algorithm 1, which outlines the step-by-step process for
updating the variables iteratively until convergence is achieved.

X ∈ Rm×n+ k α β

γ p

W U V

S ∈ Rn×n G G = (S + S⊺)/2
U ∈ Rm×k+ V ∈ Rk×n+≤
W

U

V

W U V

3.5. Convergence analysis and computational cost

The optimization of the objective function (8) involves three variables: U , V , and W . Therefore, we need to
prove that the objective function (8) is convergent under the updating rules (12), (13), and (14), respectively. The
discussion of the non-increasing behavior of the objective function for methods like GEWNMF is often based on
the well-known work of Lee and Seung [20]. Specifically, the updating rules result in the following inequalities at
each iteration:

F (U t+1, V t+1,W t+1, S) ≤ F (U t+1, V t,W t+1, S) ≤ F (U t, V t,W t+1, S) ≤ F (U t, V t,W t, S).

However, since the updating rules in the GEWNMF algorithm are similar to those in the articles [31, 4], the
theoretical review of the algorithm’s convergence using the method of auxiliary functions is referenced in these two
articles. The practical review of the convergence will be conducted at the end of the next section, i.e., section 4.5.

The time complexity of Algorithm 1 at each iteration includes the following components: the complexity of
updating the variable W , governed by (14), is O(kmn); the complexity of updating the variable U , governed by
(12), is O(knm); and the complexity of updating the variable V , as determined by (13), is O(kn2+ kmn). Because
the reduced rank k is significantly smaller than m and n, the overall time complexity of the proposed GEWNMF
algorithm is O(n2 +mn).

4. Experiments

In this section, we conduct experiments to validate the effectiveness of GEWNMF on public datasets. We focus on
the following analyses: (1) comparisons with existing NMF methods; (2) ablation study; (3) convergence analysis;
(4) parameter sensitivity analysis; and (5) clustering performance versus k (the number of dimensions of the
representation space) on datasets. We use the k-means clustering algorithm to evaluate unsupervised feature
extraction methods, setting the parameter k to correspond to the number of reduced ranks. To minimize the effect
of initialization for factor matrices, we repeat each experiment 20 times and report the average results.

Experiments were conducted on four datasets. These include face image datasets (ORL and Yale), biological
datasets (LUNG and lung-discrete), and spoken letter recognition data (Isolet). The details of these datasets are
summarized in Table 1.

4.1. Comparison methods

We compare GEWNMF with eight established NMF methods: NMF [20], GNMF [4], ONMF [9], Semi-NMF [8],
Convex-NMF [8], RNMF [11], Cauchy-NMF [12], and EWNMF [31]. To ensure fair performance comparisons, we
tested a wide range of hyperparameter values from 2−8 to 28 for each method and reported the best results.
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Table 1: Detailed information about the datasets

Dataset instances features classes Type of Data

Isolet 1560 617 26 Letter image

ORL 400 1024 40 Face image

Yale 165 1024 15 Face image

Lung-discrete 73 325 7 Biological microarray

Table 2: ACC of unsupervised feature extraction techniques

Dataset Isolet ORL Yale Lung-discrete

NMF 61.10 57.31 40.12 78.84

GNMF 60.78 57.10 39.94 77.80

ONMF 60.76 53.73 39.64 77.12

Semi - NMF 60.42 57.62 40.00 79.93

Convex - NMF 40.84 35.78 36.91 78.08

RNMF 46.64 44.15 34.06 73.42

Cauchy - NMF 59.32 64.73 42.18 67.67

EWNMF 59.97 57.25 46.10 77.67

GEWNMF 61.12 58.83 47.27 80.12

Table 3: NMI of unsupervised feature extraction techniques

Dataset Isolet ORL Yale Lung-discrete

NMF 75.42 75.55 43.07 71.06

GNMF 74.89 75.49 43.29 70.73

ONMF 74.98 72.76 42.85 69.60

Semi - NMF 75.60 75.57 43.15 73.30

Convex - NMF 56.00 55.56 39.81 70.85

RNMF 59.48 63.94 36.56 63.17

Cauchy - NMF 73.53 62.29 46.91 56.81

EWNMF 73.73 75.45 53.10 70.36

GEWNMF 76.07 75.92 53.66 75.21

Various unsupervised feature extraction methodologies were evaluated using clustering accuracy (ACC) and
normalized mutual information (NMI) metrics [3, 21], with results summarized in Tables 2 and 3.

Given a set of true class labels y and the resulting cluster labels y′, clustering accuracy is defined as follows:

ACC =
1

N

N∑
i=1

δ(yi,map(y′i)),

where

δ(a, b) =

{
1 a = b

0 otherwise.
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Here, map(·) represents a permutation mapping function that aligns the obtained cluster labels with the true labels.
A higher ACC value indicates better clustering performance.

NMI measures the agreement between two data distributions and is defined as:

NMI(y, y′) =
MI(y, y′)

max(H(y), H(y′))
,

where H(y) denotes the entropy of y and MI(y, y′) represents the mutual information between the two random
variables y and y′, defined as:

MI(y, y′) =
∑

yi∈y,y′
i∈y′

p(yi, y
′
i) ln

(
p(yi, y

′
i)

p(yi)p(y′i)

)
.

Here, p(yi) and p(y′j) are the probabilities of a data point belonging to clusters yi and y′j , respectively, while p(yi, y
′
j)

is the joint probability that a data point is assigned to both clusters yi and y′j simultaneously. The NMI score
varies between 0 and 1, with higher values indicating better clustering performance. In this research, we report the
NMI values as percentages.

4.2. Result and analysis

Illustrated in Figs. 2 and 3, the curves representing clustering accuracy and normalized mutual information are
plotted across varying reduced ranks, encompassing different methodologies. An in-depth analysis of these curves
reveals the performance of various feature extraction approaches. It becomes evident that, in the majority of
instances, the GEWNMF method consistently outperforms its counterparts, as evidenced by its ability to achieve
higher ACC and NMI scores across a diverse range of feature extraction scenarios.
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Figure 2: Results of ACC of various feature extraction methods on the four datasets

4.3. Parameter settings

Our proposed method includes three regularization parameters α, β, and γ, and its performance is affected by the
values of these parameters. Therefore, analyzing the impact of these parameters on GEWNMF and identifying
suitable values for them is crucial. As we demonstrated in Equations 1 to 3, the value of parameter γ is influenced
by parameter β, so we perform the parameter analysis on α and β). We evaluate the performance of GEWNMF
using different values for α and β.

The values of the parameters α and β are searched from {2i : i = −8,−7, . . . , 7, 8}, and the datasets in Table
1 are used to investigate the effect of variations in the main tuning parameters. Once a new representation is
specified, the k-means algorithm is used to cluster all the samples according to the new representation.
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Figure 3: Results of NMI of various feature extraction methods on the four datasets

On the other hand, initialization significantly impacts the performance of k-means clustering. To account for
this, we repeat the clustering process 20 times with different random initial values and present the average results
along with their standard deviations. We evaluate the performance of GEWNMF using the ACC and NMI metrics.
Figure 4 illustrates the ACC values for various settings of the α and β parameters, while Figure 5 shows the NMI
values. The results reveal that GEWNMF exhibits only slight sensitivity to these primary parameters.
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Figure 4: The ACC of GEWNMF with different values of parameters α and β on different datasets
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Figure 5: The NMI of GEWNMF with different values of parameters α and β on different datasets

4.4. Statistical test

In this section, the Friedman test, a nonparametric statistical test, is employed to assess the efficacy of different
comparison methods, including the proposed GEWNMF method. To achieve this, the performance of GEWNMF
across all four datasets is analyzed using the outcomes from Tables 2 and 3. In this context, datasets serve as
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the subjects under study, comparison methods represent the various treatments applied, and evaluation metrics
offer the measurements. The primary objective of this analysis is to determine the average ranking of the methods
across all datasets based on the specified criteria. Specifically, the performance of the methods is evaluated by
testing the null hypothesis that assumes no significant difference between them, using Friedman’s test to confirm
this hypothesis and determine the relative effectiveness of the methods.

The results of the Friedman test, as shown in Fig. 6, indicate the superiority of the GEWNMF method. It’s
important to note that a lower rank indicates better performance. Upon scrutinizing Fig. 6, it becomes evident that
the GEWNMF method secures the topmost position in both ACC and NMI metrics. This suggests that GEWNMF
demonstrates the utmost effectiveness when juxtaposed with alternative methodologies.

Figure 6: Average rankings obtained from the Friedman test

Moreover, to provide a more comprehensive insight into the evident enhancement in the clustering outcomes
achieved by GEWNMF, as depicted in Tables 2 and 3, a rigorous statistical analysis of the GEWNMF results is
conducted. Specifically, the paired t-test, a statistical hypothesis test, is employed. To conduct the t-test with a
significance level of α = 0.05, each algorithm was executed 20 times. We utilized the results from Tables 2 and 3,
each representing the average of 20 repetitions. The statistical experiment yields two key indicators, denoted as h
and p. The significance level, denoted by p, determines the threshold for statistical significance.

If the test result yields h = 1 and the p-value is minimal, it suggests that the null hypothesis cannot be rejected
at the 5% level, indicating a significant difference between the two algorithms. Conversely, if the null hypothesis
can be rejected at the 5% level, the test result will be h = 0. Tables 4 and 5 present the paired t-test outcomes of
GEWNMF against other methods in all datasets. Table 4 reveals that the paired t-test results indicate significant
discrepancies in the ACC values between GEWNMF and the other methods. Across most datasets, the paired
t-tests yield h = 1 and very small p-values. Conversely, on a few datasets, h = 0, suggesting that the ACC
values of GEWNMF do not exhibit a noticeable improvement compared to other algorithms. Overall, GEWNMF
demonstrates a substantial enhancement in ACC across the majority of cases.

The findings from Table 5 reveal that, with few exceptions, the paired t-test results for NMI indicate h = 1 and
small p-values across the majority of cases. This suggests notable discrepancies between the NMI values obtained
by GEWNMF and those of the comparison algorithms, indicating a significant enhancement in NMI achieved by
GEWNMF. The clustering results presented in Tables 4 and 5 consistently demonstrate a considerable improvement
with GEWNMF compared to other algorithms, thereby confirming the superiority of GEWNMF.

4.5. Convergence behavior of the GEWNMF in practice

The experiments in this section are dedicated to examining the convergence behavior of the GEWNMF technique. As
anticipated in Section 3.4, the GEWNMF cost function demonstrates a consistent decrease over multiple iterations
until convergence is reached. This observation is further illustrated in Fig. 7, where we observe a similar trend
across the datasets listed in Table 1, with the cost function steadily decreasing over iterations until it converges.
These results demonstrate the effectiveness of the GEWNMF optimization algorithm.

4.6. Time Complexity

To further assess the effectiveness of the chosen methods, we compared their running times for all nine methods, as
detailed in Table 6. GEWNMF surpasses both the RNMF and Cauchy-NMF methods across all datasets, exceeds
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Table 4: The paired t-test outcome of ACC of GEWNMF and the comparison algorithm across all datasets

Algorithms
Lung-discrete ORL Isolet Yale

p h p h p h p h

NMF 1.11 e− 15 1 2.63 e− 10 1 3.03 e− 05 1 1.03 e− 13 1

GNMF 1.14 e− 17 1 2.96 e− 10 1 6.39 e− 04 1 9.11 e− 16 1

ONMF 1.25 e− 19 1 1.99 e− 15 1 1.78 e− 01 0 6.98 e− 13 1

Semi-NMF 2.74 e− 21 1 4.43 e− 22 1 1.37 e− 21 1 1.73 e− 14 1

Convex-NMF 1.16 e− 22 1 3.09 e− 26 1 3.58 e− 25 1 4.98 e− 17 1

RNMF 1.69 e− 11 1 7.08 e− 07 1 3.84 e− 03 1 2.39 e− 19 1

Cauchy-NMF 8.02 e− 35 1 2.25 e− 01 0 1.35 e− 01 0 8.94 e− 11 1

EWNMF 5.91 e− 06 1 6.76 e− 10 1 3.56 e− 05 1 6.89 e− 02 0

Table 5: The paired t-test outcome of NMI of GEWNMF and the comparison algorithm across all datasets

Algorithms
Lung-discrete ORL Isolet Yale

p h p h p h p h

NMF 1.59 e− 14 1 2.86 e− 02 1 1.43 e− 02 1 1.26 e− 18 1

GNMF 1.08 e− 14 1 1.83 e− 08 1 1.96 e− 03 1 7.11 e− 18 1

ONMF 2.72 e− 15 1 1.28 e− 14 1 2.12 e− 03 1 4.25 e− 16 1

Semi-NMF 6.51 e− 08 1 9.85 e− 03 1 1.54 e− 01 0 7.15 e− 15 1

Convex-NMF 1.32 e− 14 1 1.35 e− 27 1 2.75 e− 25 1 7.63 e− 21 1

RNMF 7.10 e− 21 1 3.48 e− 22 1 7.61 e− 23 1 9.99 e− 22 1

Cauchy-NMF 2.54 e− 24 1 2.84 e− 23 1 5.06 e− 08 1 3.34 e− 15 1

EWNMF 4.66 e− 12 1 1.30 e− 04 1 1.43 e− 08 1 7.68 e− 02 0

Table 6: Comparison of the running time of nine algorithms on four datasets for 200 iterations

Dataset Yale ORL Isolet Lung-discrete

NMF 0.22 0.7 1.53 0.08

GNMF 0.24 0.75 1.74 0.09

ONMF 1.74 3.48 6.73 1.41

Semi-NMF 0.42 1.23 2.66 0.13

Convex-NMF 0.48 1.66 21.32 0.09

RNMF 4.48 14.71 77.22 0.37

Cauchy-NMF 17.91 25.12 108.13 12..64

EWNMF 2.53 3.25 9.61 0.26

GEWNMF 2.58 3.33 9.7 0.27

the performance of the Convex-NMF method on the Isolet dataset, and outperforms ONMF on the ORL and
Lung-discrete datasets. Overall, the time complexity of the proposed method is moderate.
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Figure 7: Convergence diagrams of the GEWNMF on different datasets

5. Conclusion

This article introduces a novel approach for dimensionality reduction called GEWNMF. The method employs a
weighted non-negative matrix factorization framework that assigns adjustable weights to each feature based on its
significance and reliability. This adaptive weighting scheme ensures that the extracted features accurately reflect
the underlying data structure, thereby enhancing the interpretability and utility of the feature representation. In
addition to feature weighting, the method incorporates a graph-based regularization technique by constructing an
adjacency graph with an optimal number of neighbors. This step preserves the local relationships within the data,
facilitating the extraction of meaningful patterns and improving the method’s robustness to noise and outliers.
Furthermore, the integration of an entropy term into the objective function enriches the feature representation by
promoting the inclusion of diverse features that contribute uniquely to the data representation. This enhancement
not only improves the model’s ability to capture complex data distributions but also boosts its generalization
capability across different datasets. The efficacy of the proposed approach is validated through extensive experiments
conducted on multiple datasets, demonstrating its superiority over existing methods in terms of feature extraction
and representation quality.

Future directions include exploring the interplay between feature weights and adjacency graph formation. In-
vestigating how different weight assignments influence graph structure and subsequent feature extraction outcomes
could provide deeper insights into further optimizing the method. Additionally, the potential integration of Distance
Metric Learning (DML) techniques offers a promising avenue for enhancing feature discrimination and classifica-
tion accuracy in practical applications. Furthermore, as computational resources advance, we plan to evaluate the
method on more complex datasets such as “Orlraws10P,” “CLL SUB111,” “Prostate GE,” and “warpPIE10P,” to
assess its scalability and performance in more challenging scenarios.

References

[1] I. Ahmed, T. Galoppo, X. Hu, and Y. Ding, Graph regularized autoencoder and its application in unsu-
pervised anomaly detection, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022), pp. 4110–4124.

[2] V. D. Blondel, N. D. Ho, and P. V. Dooren, Weighted nonnegative matrix factorization and face feature
extraction, Image Vis. Comput., 26 (2008), pp. 1–17.

[3] D. Cai, X. He, and J. Han, Document clustering using locality preserving indexing, IEEE Trans. Knowl.
Data Eng., 17 (2005), pp. 1624–1637.

302



H. Sohrabi et al., AUT J. Math. Comput., 5(4) (2024) 289-304, DOI:10.22060/AJMC.2024.23353.1252

[4] D. Cai, X. He, J. Han, and T. S. Huang, Graph regularized nonnegative matrix factorization for data
representation, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2010), pp. 1548–1560.

[5] M. Chen, M. Gong, and X. Li, Feature weighted non-negative matrix factorization, IEEE Trans. Cybern.,
53 (2021), pp. 1093–1105.

[6] P. Deng, T. Li, H. Wang, S. J. Horng, Z. Yu, and X. Wang, Tri-regularized nonnegative matrix
tri-factorization for co-clustering, Knowl.-Based Syst., 226 (2021), p. 107101.

[7] P. Deng, T. Li, H. Wang, D. Wang, S. Horng, and R. Liu, Graph regularized sparse non-negative matrix
factorization for clustering, IEEE Trans. Comput. Soc. Syst., (2022), pp. 1–12.

[8] C. Ding, T. Li, and M. I. Jordan, Convex and semi-nonnegative matrix factorizations, IEEE Trans. Pattern
Anal. Mach. Intell., 32 (2010), pp. 45–55.

[9] C. Ding, T. Li, W. Peng, and H. Park, Orthogonal nonnegative matrix t-factorizations for clustering, in
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2006, pp. 126–135.

[10] Y. Dong, H. Che, M. F. Leung, C. Liu, and Z. Yan, Centric graph regularized log-norm sparse non-
negative matrix factorization for multi-view clustering, Signal Process., 217 (2024), pp. 109–341.

[11] H. Gao, F. Nie, W. Cai, and H. Huang, Robust capped norm nonnegative matrix factorization: Capped
norm nmf, in Proceedings of the 24th ACM International Conference on Information and Knowledge Manage-
ment, 2015, pp. 871–880.

[12] N. Guan, T. Liu, Y. Zhang, D. Tao, and L. S. Davis, Truncated cauchy non-negative matrix factorization,
IEEE Trans. Pattern Anal. Mach. Intell., 41 (2017), pp. 246–259.

[13] R. Hamon, V. Emiya, and C. Fevotte, Convex nonnegative matrix factorization with missing data, in
IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), 2016, pp. 1–6.

[14] A. B. Hamza and D. J. Brady, Reconstruction of reflectance spectra using robust nonnegative matrix
factorization, IEEE Trans. Signal Process., 54 (2006), pp. 3637–3642.

[15] S. Huang, H. Wang, T. Li, T. Li, and Z. Xu, Robust graph regularized nonnegative matrix factorization
for clustering, Data Min. Knowl. Discov., 32 (2018), pp. 483–503.

[16] S. Huang, Z. Xu, Z. Kang, and Y. Ren, Regularized nonnegative matrix factorization with adaptive local
structure learning, Neurocomputing, 382 (2020), pp. 196–209.

[17] Q. i. Huang, X. Yin, S. Chen, Y. Wang, and B. Chen, Robust nonnegative matrix factorization with
structure regularization, Neurocomputing, 412 (2020), pp. 72–90.

[18] Y. Jia, S. Kwong, J. Hou, and W. Wu, Semi-supervised non-negative matrix factorization with dissimilarity
and similarity regularization, IEEE Trans. Neural Netw. Learn. Syst., 31 (2019), pp. 2510–2521.

[19] Y. D. Kim and S. Choi, Weighted nonnegative matrix factorization, in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2009, pp. 19–24.

[20] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401
(1999), pp. 788–791.

[21] H. Liu, Z. Wu, X. Li, D. Cai, and T. S. Huang, Constrained nonnegative matrix factorization for image
representation, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012), pp. 1299–1311.

[22] A. Lotfi, P. Moradi, and H. Beigy, Density peaks clustering based on density backbone and fuzzy neigh-
borhood, Pattern Recognit., 107 (2020), p. 107449.

[23] X. Ma, W. Zhao, and W. Wu, Layer-specific modules detection in cancer multi-layer networks, IEEE/ACM
Trans. Comput. Biol. Bioinform., 20 (2022), pp. 1170–1179.

[24] F. Nie, X. Wang, and H. Huang, Clustering and projected clustering with adaptive neighbors, in Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York,
NY, USA, 2014, Association for Computing Machinery, pp. 977–986.

303



H. Sohrabi et al., AUT J. Math. Comput., 5(4) (2024) 289-304, DOI:10.22060/AJMC.2024.23353.1252

[25] P. Paatero, Least squares formulation of robust, non-negative factor analysis, Chemom. Intell. Lab. Syst., 37
(1997), pp. 23–35.

[26] A. Suleman, A convex semi-nonnegative matrix factorization approach to fuzzy k-means clustering, Fuzzy
Sets Syst., 270 (2015), pp. 90–110.

[27] J. Tang and H. Feng, Robust local-coordinate non-negative matrix factorization with adaptive graph for
robust clustering, Inf. Sci., 610 (2022), pp. 1058–1077.

[28] C. Wang, J. Wang, Z. Gu, J. M. Wei, and J. Liu, Unsupervised feature selection by learning exponential
weights, Pattern Recognit., 148 (2024), pp. 110–183.

[29] D. Wang, T. Li, and C. Ding, Weighted feature subset non-negative matrix factorization and its applications
to document understanding, in IEEE International Conference on Data Mining, 2010, pp. 541–550.

[30] Y. X. Wang and Y. J. Zhang, Nonnegative matrix factorization: a comprehensive review, IEEE Trans.
Knowl. Data Eng., 25 (2013), pp. 1336–1353.

[31] J. Wei, C. Tong, B. Wu, H. Qiang, Q. Shouliang, Y. Yudong, and T. Yueyang, An entropy weighted
nonnegative matrix factorization algorithm for feature representation, IEEE Trans. Neural Netw. Learn. Syst.,
34 (2022), pp. 1–11.

[32] W. Wu, Y. Jia, S. Wang, R. Wang, H. Fan, and S. Kwong, Positive and negative label-driven nonnegative
matrix factorization, IEEE Trans. Circuits Syst. Video Technol., 31 (2021), pp. 2698–2710.

[33] W. Wu, S. Kwong, J. Hou, Y. Jia, and H. H. S. Ip, Simultaneous dimensionality reduction and classifica-
tion via dual embedding regularized nonnegative matrix factorization, IEEE Trans. Image Process., 28 (2019),
pp. 3836–3847.

[34] Y. Wu, Y. Wang, L. Hu, and J. Hu, Dcgnn: Adaptive deep graph convolution for heterophily graphs, Inf.
Sci., 666 (2024), pp. 120–427.

[35] X. Zhang, D. Chen, H. Yu, G. Wang, H. Tang, and K. Wu, Improving nonnegative matrix factorization
with advanced graph regularization, Inf. Sci., 597 (2022), pp. 125–143.

[36] J. Zhao and G. F. Lu, Clean affinity matrix learning with rank equality constraint for multiview subspace
clustering, Pattern Recognit., 134 (2023), pp. 109–118.

[37] Z. Zhou, G. Si, H. Sun, K. Qu, and W. Hou, A robust clustering algorithm based on the identification of
core points and k-nn kernel density estimation, Expert Syst. Appl., 195 (2022), pp. 116–573.

Please cite this article using:

Hazhir Sohrabi, Shahrokh Esmaeili, Parham Moradi, Feature representation via graph-
regularized entropy-weighted nonnegative matrix factorization, AUT J. Math. Comput.,
5(4) (2024) 289-304
https://doi.org/10.22060/AJMC.2024.23353.1252

304

http://dx.doi.org/10.22060/AJMC.2024.23353.1252
https://ajmc.aut.ac.ir/article_5535.html

	Introduction
	Related works
	Notations
	Nonnegative matrix factorization
	Weighted nonnegative matrix factorization
	Graph-regularized nonnegative matrix factorization
	Methods for constructing neighborhood graphs

	Proposed framework
	Entropy-weighted nonnegative matrix factorization
	Local structure graph
	Objective function
	Optimization algorithm
	Convergence analysis and computational cost

	Experiments
	Comparison methods
	Result and analysis
	Parameter settings
	Statistical test
	Convergence behavior of the GEWNMF in practice
	Time Complexity

	Conclusion

