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ABSTRACT: Recently, an innovative voting method named quadratic voting
(QV ) has been proposed which allows people to vote as much as they want, ac-
cording to their preferences intensity. Little research has been done on the safe
implementation of this method. In this paper, we first present a voting method
based on QV . This method combines the voting and planning, and gives the abil-
ity to voters to express their opinions about the candidates programs in addition to
voting. Then, a secure electronic voting protocol is proposed for implementing our
method. This protocol gives the voters to check the verifiability of ballots and the
safety of payment so that they would be sure that their votes are counted correctly.
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1. Introduction

In recent years, traditional voting based on paper ballots has been replaced by the electronic voting in many
public surveys and messenger application. In the foreseeable future, election procedures will be internet-based with
the help of artificial intelligence. This paper addresses the growing global concern regarding the diminishing public
interest in elections, a foundational element of democratic societies. To tackle this challenge, two proposed solutions
are discussed, focusing on the facilitation and enhancement of the electoral process. The first approach involves the
implementation of electronic elections, aiming to reduce physical costs and save time. The second strategy suggests
transforming elections into a social market accessible to the public, akin to a stock exchange. This paper aims to
address the identified issues and provide solutions to reinvigorate public engagement in the electoral process.

The primary focus of this work revolves around the critical challenge associated with electronic elections: the
preservation of voters’ votes and the accurate counting of the total votes cast. Consequently, the paper centers on
presenting an end-to-end verifiable electronic voting system as a viable solution. Informally, end-to-end verifiability
encompasses three key characteristics, ensuring transparency and reliability throughout the voting process.

The outlined characteristics include:

• Each voter’s ability to verify whether their vote has been cast.
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• Each voter’s ability to confirm if their vote has been recorded as cast.

• The capacity for anyone to verify if all votes have been accurately tallied as recorded.

The paper delves into the technical aspects of achieving end-to-end verifiability, emphasizing the utilization of
zero-knowledge proof algorithms and homomorphic encryption. zero-knowledge proof algorithms empower voters
to authenticate the legitimacy of their votes, while homomorphic encryption provides assurance to third parties
regarding the accuracy of the vote count. These cryptographic techniques play a pivotal role in addressing the
identified challenges and ensuring the integrity of the electoral process. In conclusion, this paper contributes to
the ongoing discourse on revitalizing democratic participation by proposing and exploring the implementation of
end-to-end verifiable electronic voting systems. Through a comprehensive examination of cryptographic techniques,
the paper aims to instill confidence in both voters and external entities, fostering a renewed interest and trust in
the democratic electoral process.

Electronic voting combines the areas of software and hardware in such a way that an electoral process including
registration, voting and counting of votes is done satisfactorily. Creating efficient and secure protocols is important
in the software area. The following requirements must be met for an electronic voting protocol to be secure.

• Eligibility: Only eligible voters can vote in the election and every voter can cast only one vote.

• Privacy:The identity of voters and their votes must be stored secretly and not reveal their personal details.

• Accuracy: Voting protocols must be error-free. The votes must be correctly recorded and tallied. Incorrect
votes should be discarded.

• Verifiability: Voters must be able to verify the correctness of their votes and final tallied result.

• Integrity: No one can modify/duplicate any ballot without being discovered.

1.1. contribution

In general, our contributions can be summarized as follows:

• We present a new method of voting based on quadratic voting (QV ). We call it QV − V&P system (voting
and planning based on quadratic voting) in the form of short. Two protocols zero-knowledge proof and proofs
of partial knowledge are introduced to verify the content of ballots in section 3.

• We present two voting protocols that meet the security requirements for the voting method introduced in
section 6.

The remainder of this paper is organized as follows. In section 2, the related works are reviewed. Section 3 is
devoted to the preliminaries and setting requirements. In section 4, we deal with the definition and explanation of
QV . In sections 5, we describe our QV − V&P System. In section 6, the implementation method and algorithms
are presented, and finally, in section 7, we analyze the security of the proposed scheme.

2. Related Works

Over the last two decades, many papers have been published on electronic voting. The protocols presented in
these papers focus on issues such as privacy, integrity, verifiability, robustness and receipt-freeness. The purpose
of a voting protocol is to provide all of those properties, but this is not practical in the real world and some of
these requirements are sometimes contradictory. The four key topics at the heart of the voting protocols are the
cryptographic algorithm, the digital signature, the mix-net, and the proof of knowledge.

Cryptographic algorithms are widely used in all protocols in order to protect the ballot content and the personal
information of voters. The cryptosystems, which is used in the voting protocol have the homomorphism property.
Homomorphism property enables the voters and authorities to compute the results of election without disclosing
the content of the ballots. Voters and authorities can also use this tool to create a common encryption public key.
Papers [4, 11, 12, 19, 27, 30] have used the homomorphism property. We use homomorphism encryption to compute
the sum of the votes and to build a common public key.

A blind signature is a form of digital signature in which the content of a message is concealed before singing.
The resulting blind signature can be publicly verified against the original, unblinded message in the manner of
a regular digital signature. Blind signatures are usually used in privacy-related protocols where the signer and
message author are different parties. Generally the blind signature is used in voting protocol in order to conceal
the identity of voters and the content of their ballots. Some voting protocols that use of the tool of blind signature
are found in papers [8, 10, 20, 22, 34, 37].
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Another technique, that is widely used in voting protocols is mix-net. A mix-net permute and modify the
sequence of objects in order to disguise the relation between elements of original and final sequence. The proposed
protocol in paper [3, 18, 25, 32] use mix-net to hide the the voter’s information.

The proof of knowledge is a tool to check the validity of people votes and the way that they vote. In fact, proof
of knowledge including zero-knowledge proof and proof of partial knowledge is an interactive protocol between
two parties in which one party (prover) wants to prove the correctness of a statement to another (verifier) without
revealing additional information. This feature is widely used in verifiable voting systems. A verifiable voting scheme
gives assurances to voters that the election has been carried out on healthy way and their vote has been counted,
without manipulating. Extensive research has been carried out on the field of verifiable voting systems. The papers
[15, 21, 22, 23, 28, 33, 36] are related to verifiable voting system. The works that have been used more and their
ideas have been generalized by us are summarized below. We use the works [6, 7, 17] to construct our proofs of
knowledge. Tassa and et al proposed a secure voting protocol for score voting and ranked voting [16]. They applied
the secret sharing scheme in a way that elections authorities could not get the results of the vote count alone. Yang
and et al proposed a verifiable voting system based on web [36]. In their work, each ballot is considered as a squared
matrix. We generalize this idea and use 3-dimensional matrix in our scheme.

Quadratic voting (QV ) is the newest voting method which has been recently presented by Lalley and Weyl [29].
A full explanation of QV will be presented in Section 5. Many research has been done on the various aspects of
this new method. For more study, the reader can refer to papers [24, 31, 35] Maskin study the relation between
ranked-choice voting and quadratic voting. he believed [29] that the combination these two voting system can
improve democracy. We present a new scheme by combining ranked-choice voting and quadratic voting. More
details will be provided in Section 6 In implementation area, Park and Rivest Examine the Security Requirements
of QV Implementation in election and survey setting [26]. They combined end-to-end verifiable voting method
with anonymous payments and presented a new refund formula for QV. In this paper, we will deal with more
details in implementation phase of a new version of QV . Our scheme surpasses the QV in two significant aspects.
Firstly, the QV plan posits a singular issue for individuals to either agree or disagree with based on the outlined
strategy in the article, determined through voting. In contrast, our proposed plan offers voters multiple programs
to consider, allowing them to make choices based on the amount paid. This structure mirrors the advantages seen
in plurality voting over majority voting, providing individuals with a broader spectrum of options. The second
noteworthy distinction lies in the limited number of plans, to our knowledge, that have been developed for the
secure implementation of this method in the context of electronic voting. Additionally, the primary article related
to our work primarily explores the theoretical concept of QV voting, scrutinizing the issue through the lens of
selection theory statistics. In contrast, our approach involves a practical implementation phase, setting our work
apart by validating the proposed method in real-world scenarios.

3. Preliminaries

The important encryption tools in order to establish security in electronic voting scheme are discrete logarithm
assumption (DLA) and argument of knowledge. Informally, DLA states that if the security parameters are chosen
properly, it will be impossible for an attacker to solve a discrete logarithm equation. A zero-knowledge argument is
a method by which one party (the prover) can prove to another (the verifier) that a given statement is true, while
avoiding conveying to the verifier any information beyond the mere truth of the statement.

3.1. Discrete Logarithm Assumption

Suppose a probabilistic polynomial time (PPT ) adversary A is a probabilistic interactive turing machine that runs
in polynomial time in the security parameter λ. We will omit the security parameter λ from the notation when it
is implicit.

Definition 3.1. For all PPT adversaries A and for all n ≥ 2 there exists a negligible function µ(λ) such that

P

[
G = Setup(1λ), g1, . . . , gn

$←− G;
: ∃ai ̸= 0 ∧

n∏
i=1

gai
i = 1

a1, . . . , an ∈ Zp ← A(G, g1, . . . , gn)

]
≤ µ(λ)

We say
n∏

i=1

gai
i = 1 is a non trivial discrete log relation between g1, . . . , gn. The Discrete Log Relation assumption

says that an adversary can’t find a non-trivial relation between randomly selected group elements. For n ̸= 0 this
assumption is equivalent to the discrete-log assumption.

179



H. Devisti et al., AUT J. Math. Comput., 6(2) (2025) 177-191, DOI:10.22060/AJMC.2024.22420.1157

Notation
N number of voters

n number of authorities

nc number of candidate

np number of plans

nv number of votes

V = {Vi}Ni=1 set of voters

pkVi
public key of Vi

skVi
secret key of Vi

signVi
blind signature of Vi

A = {Ai}ni=1 set of authorities

pkAi
public key of Ai

skAi
secret key of Ai

signAi
blind signature of Ai

Bi submitted ballot matrix of Vi

E(Bi) encrypted ballot matrix of Vi

xi
jk the value on position Bi

(y
(i)
jk , y

(i)
jk ) the encrypted value of xi

jk

B
(i)
j,k,l the value position (j, k, l)of Bi

C
(i)
j,k,l the encrypted value position (j, k, l) of E(Bi)

y authorities common public key

3.2. Proof of Knowledge

The purpose of our proof of knowledge is providing an interactive method between voters (provers) and center
(verifier) to ensure the correctness of the ballots. The voter prove to the election system that he knows the content
of the ballot, without revealing additional information about it.

Zero-Knowledge Proof. Given a cyclic group G = ⟨g⟩ = ⟨h⟩ and matrix Anc×np and Bnc×np as public knowledge
with arrays gxij and hxij , where the values of xij are the the ballot plaintexts. The prover must convince the verifier
that all corresponding arrays of Anc×np

and Bnc×np
have the same exponentiation. The values of xij must be remain

secret and the prover only knows these values. The steps of verification are as follows:

Step 1. Prover select a random matrix R = (rij)nc×np whose arrays belong to Zp and computes the matrix
T = (tij)nc×np and T ′ = (tij)nc×np where tij = grij and t′ij = hrij , then send T and T ′ to verifier.

Step 2. Verifier selects a random matrix C = (cij)nc×np
, (cij ∈ Zp) and sends C to prover.

Step 3. Prover computes matrix S = X.C +R and sends S to verifier.

Step 4. Verifier verifies if gS = AC .T and hS = BC
2 .T ′. In this equality, gS , hS , AC , BC are arranged in the form

of a matrix shown below and equalities are checked in component-wise.

gS = (gsij )nc×np , hS = (hsij )nc×np , AC = (a
cij
ij )nc×np , BC = (b

cij
ij )nc×np

Proof of Partial Knowledge. Our proof of partial knowledge consider each ballot as a set S of secret numbers,
which its members are the arrays of ballot matrix. Suppose G is a cyclic group of prime order q and also suppose
the sets {gi}li=1 and {hi}li=1 are distinct generators of G. The prover select a subset X ⊆ S with m = 2k
members. He/She then divide up S into two separate subsets X1 = {x1, x2, . . . , xk} and X2 = {x′

1, x
′
2, . . . , x

′
k}

where X = X1 ∪ X2, X1 ∩ X2 = ∅. The prover must convince the verifier that either knows X1 or X2. suppose
A = {Ai = gxi , xi ∈ X1}, Bi = {hx′

i , x′
i ∈ X2} be the set of public knowledge. Prover must convince the verifier

that she either knows the elements of X1 or the elements of X2. We assume the prover knows the X1. The steps
of verification are as follows:

Step 1. Prover chooses three sets t = {ti}ki=1, c = {ci}ki=1, s = {si}ki=1 where ti, ci, si ∈ Zp and computes

T = {Ti = gtii }ki=1, and T ′ = {T ′
i = hsi/Bci

i }ki=1 , then sends T1 =
k∏

i=1

Ti and T2 =
k∏

i=1

T ′
i to verifier.
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Step 2. The verifier select r = {ri}ki=1, ri ∈ Zp and sends r to prover.

Step 3. The prover computes d = {di = ci⊕ ri}ki=1, v = {xi.di+ ti}kl=1, sends c, r, v, s to verifier.(⊕ denotes XOR)

Step 4. The verifiers verify if the following conditions are satisfied.

k∏
i=1

gvii =

k∏
i=1

Adi
i .T1

k∏
i=1

hsi
i =

k∏
i=1

Bci
i .T2

r = d⊕ c

3.3. Cryptographic Protocols

Most of the cryptosystems used in cryptographic protocols have the homomorphism property. This property enables
us to encrypt the sum of two plaintext without additional computations and also, the sum of several plaintexts can
be decrypted without revealing none of them. For example, consider ElGamal cryptosystem which is used in our
protocol.

Distributed ELGamal Cryptosystem in Zp. Suppose p be a prime such that the discrete logarithm problem in
(Z∗

p, .) is infeasible, and suppose G = ⟨g⟩ be a cyclic subgruop of Zp of prime order q, The plaintext and cyphertext
space are respectively P = Z∗

p, C = Z∗
p × Z∗

p.
The keyspace is as follows:

K = {(p, q, a, b, c) : b ≡ ac (mod p)}

The values p, q, a and b are the public key, and c is the private key.
For K = (p, q, a, c, b), and for a secret random number k ∈ Zp−1, define

EK(x, k) = (y, y′) where y = ak (mod p), y′ = gxbk.

For y, y′ ∈ Z∗
p, the encryption function is as follows:

DK(y, y′) = y′(yc)−1 (mod p)

It is easily proven that ElGamal cryptosystem satisfy in homomorphism property. suppose x1, x2 ∈ Zp and the
corresponding encryption values are EK(x1) = (ak1 , gx1bk1) and EK(x2) = (ak2 , gx2bk2), then we have:

E(x1)× E(x2) = (ak1 , gx1bk2)× (ak2 , gx2bk2) = (ak1+k2 , gx2+x2bk1+k2) = E(x1 + x2)

4. Quadratic Voting

In the real world, there are several voting methods to choose the best option among existence choices. A voting
system is a pair E = (C,P ) where C is the set of candidates or alternatives {c1, . . . , cm}, |C| = m, and P is a profile
consisting of a set of voters indexed by their preference orders,{⪯1, . . . ,⪯n}, |P | = n. Also, a voting function is
defined as follows:

V F : C → (πC , SπC
)

where πC is a permutation of C and is actually the order that the voter considers for the candidates and SπC
is

a vector whose elements are real numbers that voter assigns to each candidate. This is the most common form of
defining a voting function.
The simplest method of voting is based on the rule of one-person-one-vote in which a person can choose one of the
available options. Some voting method are proposed to improve the choices limitation problem. Approval voting,
ranked voting, score voting and other methods give the voters the ability to have wide range of choosing.

Most voting methods focused on the rule of majority, which means that if the majority of people in the community
agree on a person, that person will be formalized as a public choice. The tyranny of the majority is direct result of
majority rule.

Various institutions have been tried over the years to solve this problem. Several suggestions including super-
majority rule, weighted voting, cumulative voting, ”mixed constitutions, and executive discretion are proposed to
solving the problem. Approval voting, ranked voting, score voting and other methods gives the people the ability
of selecting from a variety of options.
The main problem of these methods is that they do not apply voters’ preferences adequately. A new method
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presented by Posner and Weyl has been able to impose the intensity of people’s preferences. They created a new
framework of political decision making based on the theory of quadratic voting. They illustrated how quadratic
voting solve the preference-aggregation problem by giving proper weight to preferences of varying intensity.
Quadratic Voting (QV ) is a voting scheme for selecting one out of two candidates, which departs from the rule
of “one person, one vote” and instead permits each eligible voter to cast multiple votes for any single candidate,
thereby applying the intensity of his or her preference for the selected candidate.

According to 4, various voting systems can be provided. But in practice, only those systems can be implemented
that satisfied criteria such as Majority criterion, Condorcet criterion, Monotonicity criterion and etc. QV is consid-
ered a new voting system from two aspects. First, it is relatively new among voting systems such as plurality voting,
majority voting, score voting, and ranked voting. Secondly, this method has also been implemented in practice and
meets the mentioned criteria of a voting system. The first distinguished feature of QV is the paying the price of
votes, and the second is the increasing of price quadratically, that is, if buying one vote costs 1 $, then buying two
votes costs 4 $, buying three votes costs 9 $, and so on. After the election, the total income is redistributed equally
among the voters. QV has two benefits simultaneously. The first benefit allows the voters to buy as many votes as
they want and, the second benefit is the stabilizing of fairness principle, that is, the rich have to pay more to buy
more votes. The reason for the quadratic increase in vote prices is explained in reference [29].

Weyl and Posner examine various aspects of QV . They show that quadratic voting achieves optimal efficiency
in the sense that asymptotically, the system’s utilitarian inefficiency tends to zero.

5. QV − V &P System

As mentioned in Section 4, QV permits people to express the intensity of their preferences and vote as much as
they want provided that they pay the the square of the number of casted votes. Although the strength of QV is
unlimited number of votes, it can sometimes appears as an weakness.

The creators of QV claimed that it is likely to be superior to a society employing one-person-one-vote majority
rule, but they have examined it from the standpoint of distributive justice. It is only a part of fairness in the
election. Another important part of the justice is about the investment opportunities, which means that all people
have the equal position and situation to invest in the projects. As we know, this is not the case in most industrial
project and owners of big companies have more chance than small companies and usual people.

Big companies compete to invest in the projects and get more profits, so they have more incentive to pay more
amount of money and cast more votes in the election.

In the societies with high Class conflict, The value of the money is not the same for all people. For the middle
class the value of money is related to basic needs, but for the rich class it is related to unnecessary needs and
investment costs.

The reports have recently shown the top 0.01% richest individuals—the 520,000 people who have at least $19
million now hold 11% of the world’s wealth. Meanwhile, the share of global wealth owned by billionaires has grown
from 1% in 1995 to 3% in 2021 poor and wealth [9]. So we think there should be some restrictions on QV . If there
is an upper bound for the number of votes, the election will be more realistic and will prevent the vote-buying.
This upper bound can be set based on criterion such as the Gini coefficient and per capita income.

Our proposed scheme is based on QV and contains several important features. As we know, the aim of each
election is electing the most desirable people for executing projects in the best possible way.

In each election, people’s opinions about the candidates are asked directly or indirectly, but people’s opinions
about the plans are ignored. It is usually assumed that the people coincide with the candidates goals and what
people want is similar to what candidates want.

People outsource their wishes to the candidates of their choice and expect the candidates to follow their favorite
programs. These are not completely equivalence in the real world and there are differences between peoples interests
and candidates programs. We can have more democratic elections if people can be consulted about plans and goals.
Our scheme combines the voting for selecting people and individual participation in decision-making. First, the
main goals and candidates are published. Each candidate then ranks the goals based on their priorities and send this
ranking to the bulletin board. Then, people vote based on their favorite candidates, their priorities and candidate’s
priorities toward announced goals. Finally, Each person decides to cast a number of votes in election and pay the
square of the number of votes. If a person agrees with the plan, she will pay a number of votes for it, and if she
disagrees with it, she will not pay any money.

We explain our scheme in the form of an example. Suppose four people compete for mayor seat in a municipal
election and also suppose that there are four main goals for the coming years. These goals are building a park at
city center, modernization of the public transport bus fleet, establishing an environmental association and creating
a highway between the two points of the city. In addition to the preferred candidate, each person considers their
own interests in relation to these four goals. Everyone can at most cast v votes and distributes v votes between
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candidates and plans based on preferences and priorities of each voter. We suggest the maximum value v = nv×nc

for the number of votes that everyone can cast. The purpose of this proposal is to give the ability to the voters to
cast one vote for each pair (candidate, plane) providing that the equal tendency toward all candidates.

Table 1: The public election information

Plan Candidate Priority

building a park at city center Alice (1, 3, 2, 4)

modernization of the Public Transport Bus Fleet Bob (1, 4, 3, 2)

Establishing an environmental association Candy (1, 2, 4, 3)

creating a highway between the two points of the city Dorbas (1, 2, 3, 4)

5.1. Fairness and Financial Issues

At first glance, the elections in which votes are bought and sold, may be considered unfair, but clearly this problem
also has a solution. QV ’s financial strategy consists of two t phases. The initial purchase phase operates under
the principle of the square of the number of votes, while the subsequent phase involves distributing the collected
amount from the elections among all voters. The refund amount is equal to the total amount collected divided by the
number of voters. This approach, validated by Lalley and Weyl, establishes that, for the majority of participating
voters the difference between the amount paid and the amount received is positive: That is, if vP is the amount
paid and vR is the amount received by voter V , then vR − vP ≥ 0. QV system and QV − V&P System have three
advantageous features.

Empowering the Minority: QV allows the minority of voters to aspire to win the election by offering the
possibility of securing victory through a higher monetary contribution.

Reassurance for the Majority: The majority of voters can be confident that they will not face defeat in the
election, adding a layer of assurance to their participation.

Balanced Distribution: The total amount collected from the majority of voters, who purchase a smaller number
of votes, is juxtaposed against the total amount contributed by the minority of voters purchasing a larger number
of votes. This balance ensures that both factions possess a viable chance of winning the elections. Contrary to
initial impressions, affluent individuals do not have an outright ability to dictate the election outcome.

Several instances of quadratic voting in real-world scenarios include:

1. Colorado House of Representatives: In April 2019, the Democratic caucus of the Colorado House of Represen-
tatives conducted a quadratic voting experiment during their money elections [13].

2. Volt Germany’s Party Congress in Leipzig: Volt Germany, a pan-European party, utilized quadratic voting
in their second party congress in Leipzig to determine the most valued topics in their party manifesto among
members [5].

3. Gramado City Council: The city council of Gramado in Brazil employed quadratic voting to establish priorities
for the year and to achieve consensus on tax amendments [1].

5.2. The structure of ballots

By ballot we mean the electronic ballot that can be displayed on a PC or mobile and voters complete it by checking
mark or entering the numbers. Ballot used in elections can be created in the form of a matrix. Each voter can
enter the number of votes in positions of the matrix based on his/her preference. The voters must ensure that the
distribution of votes is done correctly. As mentioned, we set an upper bound for the number of votes in our scheme
and the voter must be convinced that the summing up of their votes should not be more than v. An example of
such ballot is as follows: Ballots can be designed in other ways for the convenience of voters, the security issues and
computational simplification. The numbers 1 to v are recorded below each plan and voters are asked to specify the
desired number of votes based on the candidate and the plan by filling the circles. The ballot is a corresponding
for the previous ballot.
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Table 2: Ballot of the first type

Plan

Candidate Plan 1 Plan 2 Plan 3 Plan 4

Alice 4 0 0 0

Bob 1 1 0 0

Candy 0 0 0 2

Dorbas 0 1 0 0

Table 3: Ballot of the second type

Plan 1 Plan 2 Plan 3

1 2 3 4 1 2 3 4 1 2 3 4

Alice # # #  # # # # # # # #

Bob  # # #  # # # # # # #

Candy # # # # # # # # # # #  

Dorbas # # # #  # # # # # # #

6. A Verifiable QV − V &P System

In this section, we present QV − V&P (Quadratic Voting and Planing) system and explain the rest of the details.

• Voter: Eligible voters can cast their ballots by paying the cost of votes according to payment rule.

• Plan: Prior to the election, the plans are determined by a poll or a general council, such as the municipality
council or parliament, so that candidates can choose their priorities among them, then the plan is sent to the
bulletin board.

• Candidates: Candidates that participate in the elections declare their priorities and send them to the bulletin
board so that voters can make decisions about them.

• Public bulletin board: Essential information concerning the election is published on a secure public bulletin
board. The content of the bulletin board includes the public key of authorities and voters, approved plans,
submitted votes and other items. Every one can access the contents of the bulletin board at anytime, but
no-one can alter or distort the existing data on it. Our system consists of the preparation phase, registration
phase, ballot casting phase, ballot verification phase and tally stage.

6.1. preparation Phase

Authorities and voters generate their public and private keys. The common public key is computed using the
authorities public keys, which is sent on the public bulletin board in order to encrypt each ballot before submission.
Authorities choose their public and private key pairs (xi, yi = gxi) according to ElGamal cryptosystem and the
public key of election is y =

∏n
i=1 yi, where xi ∈ G = ⟨g⟩. Voters use the public key of election y to encrypts their

ballots.

6.2. Registration Phase

In the registration phase, each voter must visit a registration station in person and present her ID document to
station authorities. The authorities prepare the list of eligible voters prior to voting phase and transfer it in the
bulletin board. Validity of this list can be checked by the third party. The reason for this process is that in the
tallying phase, only ballots will be counted that encrypted by the existence public key in table. So the valid votes
are only casted by the eligible voters. Another reason is that each voter can only vote once and any attempt to
re-vote will be revealed. The eligible voters must generate a key pair including a public key pkVi

and a private
key skVi

. After verification by the authorities, the eligible voters should upload their to the public bulletin board.
Then, all authorized voters must sign their submissions using their skVi , and others can verify their identities by
using corresponding pkVi . In this case, Voters uses Digital Signature Algorithm (DSA) in order to guarantee the
security of submitted ballot and resist to forgery.
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6.3. Payment Phase

After registration, Each voter must pay the price of the votes according to the payment rule. One of the security
requirements of this method is that the identity of the voter should be kept secret. Therefore the ATMs and banks
payment systems is not reliable because transactions and the name of voters are recorded and information made
available to the government.

An alternative to traditional payment systems is to use cryptocurrencies such as Bitcoin. Here we present a
payment system based on Bitcoin.

Bitcoin Protocol. The Bitcoin protocol is a peer-to-peer electronic cash system which no trusted third party interfere
in transactions between users [2]. In this online payment system, a payer (voter) sends a payment directly to a
payee (financial unit of election system). Bitcoin uses cryptographic principles to protect transactions security and
users identity.

The basic feature of bitcoin is that the users’ identities are always hidden and all transactions are visible, so
bitcoin can be a reliable financial system to implement QV -based methods. In order to use Bitcoin protocol the
voters need to create a Bitcoin account and a wallet. The basic components for the cryptographic in the bitcoin
protocol is summarized as follows:

• One-way hash function: The double-SHA256 hashing algorithm is used to hash transactions and to solve
proof-of-work puzzles.

• E-wallet The bitcoins and their corresponding transaction hashes are stored in a database named, e-wallet .
It is usually referred to as the bitcoin wallet

• Bitcoin: Bitcoin is a digital currency interchanged between users over the Bitcoin network. BTC or B is the
currency symbol for bitcoin.

• Proof of work : is a form of cryptographic proof in which one party (the prover) proves to others (the verifier)
that a certain amount of a specific computational effort has been expended. Verifier can subsequently confirm
this expense with minimal effort on their part.

Miners perform proof-of-work calculations on transaction blocks. This process is called mining and is per-
formed by mining software. Mining yields bitcoins for the miner as a reward.

• Block-Chain: The block-chain is a public financial center which stores processed transactions. It is necessary
to make payment, the users create a transaction with all pertaining information including the address of the
payee, the amount of bitcoins and a challenge. The transaction is distributed to all network nodes. The node
puts this transaction into a block and attempt to solve the proof-of work for this block.If a node discovers a
solution to the challenge, it distributes it to all other nodes and If all transactions are valid and not spent
before, then the other nodes accept the block and start working on the next block in the chain. It is sometimes
possible that the chain encounter the forks because two blocks were mined and broadcasted simultaneously.
The longest block-chain is considered to be the correct by the nodes. Coin-base and regular transactions are
two types of transactions.

• Transactions: Coin-base transactions are used for new bitcoins, and regular transactions are used for trans-
ferring of bitcoins between users.

This procedure is done with the cooperation of voters and authorities. As was said, voters must produce a pair
of public and private keys to perform transactions. Here we will explain how to pay for the vote with the help of
ElGamal blind signature [14]. Vi selects the number of votes vi and published the commitment ai = E(vi, k) by
using his private key. Then, Vi create blind message a′i = blindVi(ai, ri), where ri is random blinding factor. Then,
he/she go to the cashier and asks her a signature for a′i. The cashier checks the identity of Vi and give him the
signature di = signA(a

′
i), where signA(a

′
i) is election signature scheme produced by A. Next, cashier sends di back

to Vi At the end of process, the list of voters’ details and signatures will be sent to the bulletin board. and each
voter can see his commitment (IDi, a

′
i)and others commitment on the public board.

Voter Vi retrieves the signature bi = unblind(di, ri) for the commitment value of ai. He/She verifies if yi is
A’s signature for the commitment ai. If the verification reject, Vi can claim the invalid signature by showing that
(ai, bi) is invalid.

When the election system issue PBCs, Vi received one of these PBCs. the voter checks the validity of the bitcoin
address include in the PBCs contain coins. Then, Vi open and extract the covered private key which allows to him
the access to the corresponding Bitcoin address in the PBC. The voter Vi generate a pair of private key ViPBK
and a Bitcoin address ViBA that will be used for voting. Only Vi can perform transactions, and so, no one except,
Vi can link the identity of the owner of ViBA to the bitcoin address in the PBC.
At the beginning of election, A has produced a pair of private key A.BPK and a Bitcoin address A.BA which
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published publicly. The eligible voters who received a signature from election system should register the Bitcoin
Address that they use it for voting.
Voter Vi produce a Bitcoin transaction using ViBA as input address nad A.BA as output address. The voter
sends an arbitrary amount of BTC and the pair of (ai, vi) to A. After confirming the details of the transaction,
Vi sends the transaction to the bitcoin network. Authorities A can check the validity (ai, yi) by having the public
information of each voter. If the validation is successful, A published a list all of the Bitcoin address that send the
correct signature yi of the commitment ai given by (ViBA, ai, bi). At the end of this stage, the number of entries
in the list that contain (IDi, a

′
i) should be equal to the number of entries in the list that contains (ViBA, ai, bi).

Since ai contains the vote vi, A can just check and collect the list that contains (ViBA, ai, bi) Sinse ai contain the
vote vi., election authorities can just check and collect the list contains (ViBA, ai, vi).

6.4. Ballot Casting Phase

The Voters who take part in the election, pay a fee for the number of votes which they have bought and then
distribute votes among the candidates and plans. Suppose there are nc candidates and np plans in the election.
The input values of the ballot matrix the input must be encrypted using the ElGamal cryptosystem. In order to
hide the ballot content, each voters must encrypt the ballots using the public key PK and send it to the center.
Suppose the voter Vi, decide to cast a ballot in the voting phase and sending his vote to the center. For this purpose,
Vi selects nc × np random numbers rij from the Zp and encrypts each position of ballot matrix according to the
ElGamal cryptosystem. For the ballot Bi described in Section 5, we have:

Bi =


x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44


where the encrypted values of Bi according to to ElGamal cryptosystem are as follow:

(yjk, y
′
jk) = (grjk , gxjkyrjk), rjk ∈ Zp, 1 ≤ j ≤ nc 1 ≤ k ≤ np

E(Bi) =


(yi11, y

′
11) (y12, y

′
12) (y13, y

′
13) (y14, y

′
14)

(y21, y
′
21) (y22, y

′
22) (y23, y

′
23) (y23, y

′
23)

(y31, y
′
31) (y32, y

′
32) (y33, y

′
33) (y34, y

′
34)

(y41, y
′
41) (y42, y

′
42) (y43, y

′
43) (y44, y

′
44)


Before explaining the voting algorithm, we should note that E(Bi) is shown according to its column. The verification
can be carried out base on rows of E(Bi) or any family of subsets containing elemnts of E(Bi), provided that the
number of elements of each subset be even.

A = (X1, X2, . . . , Xn),

We consider each column of E(Bi) as a set and then divide it into two separate sets X1
k and X2

k so that the following
conditions are satisfied

X1
k ∩X2

k = ∅, Xk = X1
k ∪X2

k

In algorithm 1, we describe the voting method and proof of partial knowledge when the ballots are in the form of
table 1. We are now present it for the case that the ballots are in the form of table 2. Here, each ballot is in the
form of 3-dimentional matrix Bi

j×k×l, where the position (j, k, l) shows whether the voter i devote to candidate

j for plan k, l votes or not. If the answer is yes, he/she fills the corresponding circle and Bi
j×k×l = 1, otherwise

Bi
j×k×l = 0.

7. Tallying phase

After the voting process is done completely, The election authorities are present to count the votes. Because all the
authorities have declared their public key and details to the electoral system in the registration stage, no one can
deceive others or change their private key. The counting of votes and the final results are obtained by multiplying
the ballot matrices component-wise. This is due to the homomorphism property of ElGamal cryptosystem. As was
seen in section 1, we have

E(xjk) = (y
(i)
kj , y

(i)
kj ) = (grjk , gxjkyrjk) 1 ≤ j ≤ nc, 1 ≤ k ≤ np
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Algorithm 1: Voting Algorithm 1

Input: Vi, (IDi, ai), Bi, Xk = (X1
k , X

2
k) Hash function h : {0, 1}∗ → G

Output: encrypted ballot E(Bi), proofs of E(Bi)
1 begin
2 for j ← 1 to nc do
3 for k ← 1 to np do
4 E(xjk) = (yjk, y

′
jk) = (grjk , gxjkyrjk ), rjk ∈ Zq

5 t = (ti)
l
i=1, c = (ci)

l
i=1, s = (si)

l
i=1, r = (ri)

l
i=1

6 where ti, ci, si, ri, xi ∈ Zp

7 if Verifier choose X1
k then

8 A1
k = {Ai = g

xij

i , xij ∈ X1
k}, B2

k = {Bi = h
xij

i , xij ∈ X2
k}

9 T = {Ti = gti}li=1, T ′ = {T ′
i = hti/Bci

i }
l
i=1,

10 T1 =
l∏

i=1

Ti, T2 =
l∏

i=1

T ′
i

11
l∏

i=1

gvil =
l∏

i=1

Adi
i .T1

l∏
1

hsi
i =

l∏
i=1

Bci
i .T2, r = d⊕ c ⇒ verifying Xk

12 end if
13 else if Verifier choose X2

k then

14 T = {Ti = hti}li=1, T ′ = {T ′
i = gti/Aci

i }
l
i=1

15 T1 =
l∏

i=1

Ti , T2 =
l∏

i=1

T ′
i

16
l∏

i=1

hvi =
l∏

i=1

Bdi
i .T1

l∏
i=1

hsi
l∏

i=1

Bci
i .T2, r = d⊕ c ⇒ verifying Xk

17 end if

18 r = {hash(Xk
1 (i) ∥ X2

k(i) ∥ Ti ∥ T ′
i )}li=1 d = {di = ci ⊕ ri}ki=1, v = {xi.di + ti}kl=1

19 PCi
k = PoPK{Xk, T, T

′, r, c, s, v} proof of columnXk

20 end for

21 end for

22 end

23 digital signature: SVi = signVi
(E(Bi) ∥ PoPKXk

(i), skVi)

24 submitted document: E(Bi), PCi
k, SVi , k ∈ [1, np]

by component-wise multiplying of all E(Bi)’s elements, we have

E(

N∑
i=1

xjk) =

N∏
i=1

E(i)(xjk)

then, the result was obtained as follows:

D(E(

N∑
i=1

xjk)) =

N∏
i=1

gxjk(

n∏
i=1

yi)
rkj

n∏
i=1

(

N∏
i=1

yrkj )xi

which simplifies to

D(E(

N∑
i=1

xjk)) = g
∑N

i=1 xjk

where the result is revealed by computing a discrete logarithm. and eventually, the candidate who received the most
votes will be selected as the winner, and the plan that received the most votes,will be introduced as the selected
plan to be implemented.

8. Security Analysis

The first question is, how Proof of knowledge 3.2 can prove the correctness of the ballot matrix. In order to answer
this question, we must emphasize that a ballot matrix is valid whenever each of its arrays is correct and the sum
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Algorithm 2: Voting Algorithm 2

Input: Vi, Bi, PK Hash function h : {0, 1}∗ → G
Output: encrypted ballot E(Bi), proofs of E(Bi).

1 begin
2 for j ← 1 to nc do
3 for k ← 1 to np do
4 for l← 1 to nv do
5 r, t, v, s ∈ Zq, T0 = gt, T1 = yt

6 if Bi
j×k×l = 1 then

7 C
(i)
j,k,l = E(1) = (c1, c2) = {gr, g.yr}, T2 = ys/cv2

8 end if

9 else if Bi
j×k×l = 0 then

10 C
(i)
j,k,l = E(0) = (c1, c2) = {gr, yr}, T2 = gv.ys/cv2

11 end if
12 v = hash(c1||c2||T0||T1||T2), w = v ⊕ u, s = r.w + t

13 PC
(i)
j,k,l = PoPK{C(i)

j,k,l, T0, T1, T2, u, w, s, v} ⇒ proof of ciphertextC
(i)
j,k,l

14 end for

15 end for

16 end for
17 for j ← 1 to nc do
18 for k ← 1 to np do
19 Anc×np(j, k) = gsumj,k , Bnc×np(j, k) = h

20 sumj,k =
nv∑
l=1

Bj,k,l

21 R = (rjk)nc×np , T = (tjk)nc×np , T ′ = (t′jk)nc×np

22 C = (cjk)nc×np , S = A.C +R where rjk, tjk, t
′
jk, cjk ∈ Z⨿

23 if gS = AC .T & hS = BC .T ′ then
24 The statement (sumj,k = 1) is verified
25 end if
26 else if then
27 The verification is failed
28 end if

29 P
(i)
j,k = PoZK

(i)
j,k{A,B, T, T ′, S} ⇒ proof the(gsumj,k = h)

30 end for

31 end for

32 end

33 digital signature: SVi = signVi
(E(Bi) ∥ PoPKXk

(i) ∥ PoZK
(i)
j,k, skVi)

34 submitted document: E(Bi), PC
(i)
j,k,l, P

(i)
j,k , SVi , j ∈ [1, nc], k ∈ [1, np]

of all arrays is equal to the number of votes purchased by the voter. It is therefore required to carry out nc × np

proof of partial knowledge and one zero-knowledge proof between voter and election system to check the validity
of the ballot matrix. We show that this can be done by reducing the number of transactions to np + 1.

Theorem 8.1. The proof of partial knowledge introduced in 3.2 most likely guarantees the validity of the ballot
matrix.

Proof. We assumed that each column k of matrix E(Bi) has np = 2l elements. The voter Vi should published
the public information associated with each value of xjk, including A,B, gi, hi. In the proposed proof of partial
knowledge, we give the ability to the election system to choose two subset with l elements of column k at random.
The election system asks the user to publish the relevant commitments and randomly selects one of two subset again.
The possible choices for X1

k and X2
k is

(
2l
l

)
and the probability of selecting X1

k by the center is 1
2

1

(2ll )
. Obviously,

if the prover knows the value of all xjk, then he/she can convince the verifier that he/she knows the sum of xjk’s,
but the reverse of the statement is not necessarily true, that is, if one party knows the sum of xjk’s, he/she may
not know each of those values. That’s why we give the verifier the option to choose any subset of Xk, elements
that he she wants. If the prover really knows all the values of xi, then he can answer any of questions about the
sum of desired set elements. When the number of versifier’s questions about the values of xjk exceed the number
of np, he/she can behave in such a way that form a system of linear equations consists of np variables and nr (the
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number of transaction) equations as follows:

x1
1 + x1

2 + · · ·+ x1
l = y1 (iteration1)

...
...

xi
1 + xi

2 + · · ·+ xi
l = yi (iteration i)

...
...

xnr
1 + xnr

2 + · · ·+ xnr

l = ynr
(iterationnr)

where, xj
i ∈ Xk. The prover has indirectly proved that she knows the answer of this linear equations system and

consequently he/she knows all the value of xjk. □

Theorem 8.2. In our proposed scheme, an attacker cannot extract the information of ballot Bi belonging to voter
Vi.

Proof. If an attacker wants to access the content of ballot Bi, then he needs to decrypt E(Bi). Decrypting E(Bi)
requires solving 2× nc × np discrete logarithm equations, which is impossible due to DLA introduced in 3.1. □

Conclusions

In this paper, we present a method of voting and planning based on quadratic voting and propose a secure voting
protocol for it . This method can improve quadratic voting. The proof of knowledge presented in this paper reduces
the number of transactions between the voter and the election system and has the ability to confirm the validity of
the ballot with a smaller number of transactions between the two parties.
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