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ABSTRACT: In this study based on the accelerated over relaxation (AOR)
method we make an iterative scheme for solving generalized Lyapunov matrix equa-
tion

AX +XB +

m∑
j=1

NjXMj = C,

over complex or real matrices. Then we analyze the convergence of the new itera-
tive method in detail. There have been discussions for the calculation of optimal
parameters. Finally a numerical example is given to demonstrate the capability of
the new method.
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1. Introduction

The matrix equation

AX +XB +

m∑
j=1

NjXMj = C, (1)

is a generalized Sylvester equation that involves known matrices A,B,Nj ,Mj (j = 1, . . . ,m), C ∈ Cn×n and the
unknown matrix X ∈ Cn×n. This equation is commonly encountered in computational science and engineering
applications, such as in evaluating implicit numerical schemes for partial differential equations and decoupling
techniques for ordinary differential equations, among others. Previous works, such as [1, 2, 9, 10, 13, 30, 35, 36, 37],
have addressed this problem. Specifically, in [14], an iterative algorithm was proposed to solve matrix equation (1).
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Previous researchers have investigated various methods for solving generalized Sylvester matrix equations. For
instance, Dehghan and Hajarian [16] focused on the reflexive solutions of the coupled Sylvester matrix equations and
proposed an iterative algorithm. Mukaidani et al. [32] developed a numerical algorithm for solving cross-coupled
algebraic Riccati equations. Additionally, Zhou et al. [39, 40] investigated generalized Sylvester matrix equation
(1) through the use of explicit solutions.

The focus of this paper is to present a novel iterative method for solving the generalized Sylvester matrix
equation (1). Specifically, we introduce a new approach that can lead to faster convergence rates by carefully
selecting appropriate parameters in the algorithm.

The linear Sylvester matrix equation (1) can be transformed into an equivalent system of linear equations as
follows:

(I ⊗A+BT ⊗ I +

m∑
j=1

MT
j ⊗Nj)vec(X) = vec(C),

where

vec : X = [x1, . . . ,xn] 7→

x1

...
xn

 ,

where xk is the k − th column of X.
The uniqueness of the solution of linear Sylvester matrix equation (1) can be determined by verifying the

following condition:

det(I ⊗A+BT ⊗ I +

m∑
j=1

MT
j ⊗Nj) ̸= 0,

where det(A) denotes the determinant of the matrix A. This condition ensures that the system of linear equations
associated with (1) has a unique solution.

Bouhamidi et al. proposed an iterative method to solve generalized Sylvester matrix equation (1) in [14]. This
is just one of the many techniques that have been used to develop iterative methods for solving matrix equations.
Some of the other methods that have been utilized include those proposed by Smith et al. [34], Soleymani et al.
[5, 19, 27], as well as those by Ding et al. [22, 23, 24], for example. Additionally, iterative methods have also been
designed for solving other types of matrix equations such as algebraic Riccati equations [21], coupled Sylvester
matrix equations [18], and more [4, 8, 11, 15, 17, 25, 28, 29, 33].

1.1. The structure of the paper

The outline of this paper is as follows:

1. A new iterative method is introduced for Eq. (1) in Section 2 and also the convergence analysis of this method
in details is presented. There have been discussions for the calculation of optimal parameters.

2. Section 3 includes a test problem to examine the new scheme and a comparison is made with the existing
results.

3. At the end, we give some conclusions in Section 4.

1.2. Primitive definitions and notations

To ensure a clear understanding of the symbols and notation used in this paper, we will provide a brief explanation
of them. The real vector sets with dimension n will be denoted by Rn (Cn for the complex vector), and the real
matrices with m rows and n columns will be denoted by Rm×n (Cm×n for the complex matrix). Additionally, we
will use the Hermitian of A denoted as AH , the Frobenius norm for matrix A denoted as ∥A∥F =

√
tr(AAH), and

the spectral radius of A denoted as ρ(A). The Kronecker product (or tensor product) will be denoted by ⊗, the
zero matrix by O, the identity matrix of size n× n by In, and AT will refer to the transpose of A.
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2. Main results

Drawing inspiration from the AOR technique proposed by Hadjimos [26], we have developed a novel approach for
solving Eq. (1). To accomplish this, we introduce a splitting procedure for the matrices A,C,N1, . . . , Nm, and
M1, . . . ,Mm in Eq. (1):

A = W1 + iT1, B = W2 + iT2, C = C1 + iC2, Nj = Uj + iVj , Mj = Fj + iGj , j = 1, . . . ,m,

where W1, W2, T1, T2, C1, C2 and Uj , Vj , Fj , Gj (j = 1, . . . ,m) are real matrices in Rn×n.
Furthermore, assuming that the solution of Eq. (1) can be expressed in the form of X = Z + iY , where Z

and Y ∈ Rn×n, we can substitute this assumption into the generalized Sylvester matrix equation (1), yielding the
following result: 

W1Z − T1Y + ZW2 − Y T2 +
m∑
j=1

[UjZFj − UjY Gj − VjZGj − VjY Fj ] = C1,

W1Y + T1Z + ZT2 + YW2 +
m∑
j=1

[UjZGj + UjY Fj + VjZFj − VjY Gj ] = C2.

Drawing upon the AOR technique proposed by Hadjimos [26], we derive the new method as follows:

WZ + ZWT = ω
(
TY + Y TT

)
+ (1− ω)

(
WZ + ZWT

)
+ ω

m∑
j=1

[UjY Gj + VjZGj + VjY Fj − UjZFj ] + ωC1,

WY + YWT =− r
(
TZ + ZTT

)
+ (1− r)

(
WY + YWT

)
+ r

m∑
j=1

[VjY Gj − UjZGj − UjY Fj − VjZFj ] + rC2.

(2)

We now consider the following iterative method based on (2), with the introduction of auxiliary real parameters
ω ̸= 0 and r ̸= 0:

W1Z
(k+1) + Z(k+1)W2 = ω

(
T1Y

(k) + Y (k)T2

)
+ (1− ω)

(
W1Z

(k) + Z(k)W2

)
+ ω

m∑
j=1

[
UjY

(k)Gj + VjZ
(k)Gj + VjY

(k)Fj − UjZ
(k)Fj

]
+ ωC1,

W1Y
(k+1) + Y (k+1)W2 =− r

(
T1Z

(k+1) + Z(k+1)T2

)
+ (1− r)

(
W1Y

(k) + Y (k)W2

)
+ r

m∑
j=1

[
VjY

(k)Gj − UjZ
(k+1)Gj − UjY

(k)Fj − VjZ
(k+1)Fj

]
+ rC2.

(3)

By appropriately selecting values for ω and r, we can ensure that the resulting AOR-like iterative method
exhibits a faster convergence rate and higher computational efficiency.

We initialize the iterative method with an initial approximation of X(0) = Z(0) + iY (0).

Remark 2.1. If we set ω = r in the AOR-Like method given by (3), the resulting method reduces to the SOR-Like
method described in [20].

Remark 2.2. If the generalized Sylvester matrix equation (1) is defined on real matrices, such that

Y = O, T1 = T2 = O, C2 = O, Vj = O, Gj = O, j = 1, . . . ,m,

then method given by (3) can be expressed as:

W1Z
(k+1) + Z(k+1)W2 = (1− ω)

(
W1Z

(k) + Z(k)W2

)
− ω

m∑
j=1

[
UjZ

(k)Fj

]
+ ωC1.

If we further assume that W2 = WT
1 and Fj = UT

j (j = 1, . . . ,m), then AOR-Like method (3) reduces to the
method proposed in [20] for solving the real generalized Lyapunov matrix equation.
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2.1. Convergence analysis of AOR-Like method
In this section, we will discuss the convergence properties of the new iteration method. To begin with, let us set

W̃ = WT
2 ⊗ In + In ⊗W1, T̃ = TT

2 ⊗ In + In ⊗ T1,

P =

m∑
j=1

[
FT
j ⊗ Vj +GT

j ⊗ Uj

]
, Q =

m∑
j=1

[
GT

j ⊗ Vj − FT
j ⊗ Uj

]
,

and
Ω1(α) = (1− α)In2 + αQ̂, Ω2(α) = αT̂ + αP̂ , (α ∈ R), (4)

where Q̂ = W̃−1Q, P̂ = W̃−1P and T̂ = W̃−1T̃ .

For the remainder of this paper, we will require the following lemmas.

Lemma 2.3. [20] Suppose that the matrices P, Q, W̃ and T̃ satisfy

QT̂ = T̃ Q̂, and QP̂ = PQ̂, (5)

then the matrices Ω1(ω) and Ω2(r) are commute, i.e., Ω1(ω)Ω2(r) = Ω2(r)Ω1(ω).

Proof. Assumptions (5) yield

r(1− ω)T̂ + r(1− ω)P̂ + ωrQ̂T̂ + ωrQ̂P̂ = r(1− ω)T̂ + ωrT̂ Q̂+ r(1− ω)P̂ + ωrP̂ Q̂,

or [
(1− ω)I + ωQ̂

] [
rT̂ + rP̂

]
=

[
rT̂ + rP̂

] [
(1− ω)I + ωQ̂

]
,

which becomes Ω1(ω)Ω2(r) = Ω2(r)Ω1(ω).

□

We also have the following lemma.

Lemma 2.4. [20] Let the matrices Uj, Vj, Fj, Gj , (j = 1, . . . ,m) be symmetric and W be symmetric positive

definite. Then the eigenvalues of matrix Q̂ are real.

Proof. Since the matrices Uj , Vj , (j = 1, . . . ,m) are symmetric, thus Q is symmetric. On the other hand W is

symmetric positive definite matrix, that yields the matrix W̃ = W ⊗I+I⊗W is symmetric positive definite. Hence

W̃ is invertible. Therefore we can write

Q̂ = W̃− 1
2

(
W̃− 1

2QW̃− 1
2

)
W̃

1
2 .

This relation concludes that Q̂ is similar to W̃− 1
2QW̃− 1

2 . Since Q is symmetric then W̃− 1
2QW̃− 1

2 is symmetric

matrix. This completes the proof. □

We will also need the following lemma in the following.

Lemma 2.5. [3] Both roots of the real quadratic equation λ2 − pλ+ s = 0 are less than one in modulus if and only
if |s| < 1 and |p| < 1 + s.

We are now ready to discuss the convergence analysis of the AOR-Like method. By taking the operator vec from
both sides of equation (3), we obtain:



(WT
2 ⊗ In + In ⊗W1)z

(k+1) = ω(TT
2 ⊗ In + In ⊗ T1)y

(k) + (1− ω)(WT
2 ⊗ In + In ⊗W1)z

(k)

+ω

m∑
j=1

[
FT
j ⊗ Vj +GT

j ⊗ Uj

]
y(k)

+ω

m∑
j=1

[
GT

j ⊗ Vj − FT
j ⊗ Uj

]
z(k) + ωvec(C1),

(WT
2 ⊗ In + In ⊗W1)y

(k+1) =− r(TT
2 ⊗ In + In ⊗ T1)z

(k+1) + (1− r)(WT
2 ⊗ In + In ⊗W1)y

(k)

− r

m∑
j=1

[
FT
j ⊗ Vj +GT

j ⊗ Uj

]
z(k+1)

+ r

m∑
j=1

[
GT

j ⊗ Vj − FT
j ⊗ Uj

]
y(k) + rvec(C2),

(6)
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where y(k) = vec(Y (k)) and z(k) = vec(Z(k)). Eq. (6) takes the simple form
W̃z(k+1) = ((1− ω)W̃ + ωQ)z(k) + (ωT̃ + ωP )y(k) + ωvec(C1),

W̃y(k+1) = −(rT̃ + rP )z(k+1) + ((1− r)W̃ + rQ)y(k) + rvec(C2).

(7)

Now (7) becomes 
z(k+1) = Ω1(ω)z

(k) +Ω2(ω)y
(k) + ωr,

y(k+1) = −Ω2(r)z
(k+1) +Ω1(r)y

(k) + rs,

(8)

where r = W̃−1vec(C1), s = W̃−1vec(C2), and Ω1, Ω2 are defined in (4).

Substituting the first equation of (8) into the second equation yields:

y(k+1) = −Ω2(r)
[
Ω1(ω)z

(k) +Ω2(ω)y
(k) + ωr

]
+Ω1(r)y

(k) + rs

= −Ω2(r)Ω1(ω)z
(k) + (Ω1(r)− Ω2(r)Ω2(ω))y

(k) + rs− ωΩ2(r)r. (9)

Using the relationship given in equation (9), it is possible to express the coupled vector form given in equation (8)
in the form of a matrix-vector equation:[

z(k+1)

y(k+1)

]
=

[
Ω1(ω) Ω2(ω)

−Ω1(ω)Ω2(r) Ω1(r)− Ω2(ω)Ω2(r)

] [
z(k)

y(k)

]
+

[
ωIn2 O

−ωΩ2(r) rIn2

] [
r
s

]
. (10)

The iterative form of relation (10) is commonly used and can be expressed as follows:

u(k+1) = Φ(ω, r)u(k) +Υ(ω, r)

[
r
s

]
, (11)

where

Φ(ω, r) =

[
Ω1(ω) Ω2(ω)

−Ω2(r)Ω1(ω) Ω1(r)− Ω2(r)Ω2(ω)

]
,

is called iteration matrix of AOR-Like method and

Υ(ω, r) =

[
ωIn2 O

−ωΩ2(r) rIn2

]
.

Also the vector u(k) is defined by u(k) =
[
z(k)

T

, y(k)T
]T

.

Iteration matrix Φ(ω, r) can be decomposed as (See [6])[
Ω1(ω) Ω2(ω)

−Ω1(ω)Ω2(r) Ω1(r)− Ω2(ω)Ω2(r)

]
=

[
In2 O

−Ω2(r) In2

] [
Ω1(ω) Ω2(ω)
O Ω1(r)

]
,

where In2 is identity matrix of size n2 × n2.
We will now examine the convergence properties of the new iterative method.
The next theorem presents sufficient conditions for the convergence of the new method. According to relation

(11), it is clear that AOR-Like method is convergent if and only if ρ(Φ(ω, r)) < 1.

Theorem 2.6. Assuming that the conditions of Lemmas 2.3 and 2.4 are satisfied, and there exists a real constant
σ such that T̂ + P̂ = σIn2 , and let η < 1 be any eigenvalue of matrix Q̂.
(a): Suppose

0 < σ < 1− η, 0 < ω ≤ 2

1 + σ − η
, 0 < r <

−4 + 2ω − 2ηω

−2 + 2η + ω + σ2ω − 2ηω + η2ω
, (12)

then ρ(Φ(ω, r)) < 1.
(b): Suppose

η − 1 < σ < 0, 0 < ω ≤ 2

1− σ − η
, 0 < r <

−4 + 2ω − 2ηω

−2 + 2η + ω + σ2ω − 2ηω + η2ω
, (13)

then ρ(Φ(ω, r)) < 1.
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Proof. Suppose (λ,v) is an eigenpair of matrix Φ(ω, r), where v = [vT , wT ]T , with v, w ∈ Cn2

. The definition of

eigenvalue and eigenvector can be used to derive the following expression Φ(ω, r)

[
v

w

]
= λ

[
v

w

]
or (see [6]):

[
Ω1(ω) Ω2(ω)

O Ω1(r)

] [
v

w

]
= λ

[
In2 O

−Ω2(r) In2

]−1 [
v

w

]
= λ

[
In2 O

Ω2(r) In2

] [
v

w

]
,

that gives 
Ω2(ω)w = (λIn2 − Ω1(ω)) v,

− (λIn2 − Ω1(r))w = λΩ2(r)v.

(14)

Lemma 2.3 concludes Ω1(ω)Ω2(r) = Ω2(r)Ω1(ω) and from (14) we have

− (λIn2 − Ω1(ω)) (λIn2 − Ω1(r))w = λΩ2(r)Ω2(ω)w.

Based on these results, it is straightforward to observe that

−
(
λIn2 − [(1− ω)In2 + ωQ̂]

)(
λIn2 − [(1− r)In2 + rQ̂]

)
w = λ[rT̂ + rP̂ ][ωT̂ + ωP̂ ]w = ωrλ[T̂ + P̂ ]2w,

and (
λIn2 − [(1− ω)In2 + ωQ̂]

)(
λIn2 − [(1− r)In2 + rQ̂]

)
= (λ2 + (ω + r − 2)λ− ω − r + ωr + 1)In2

+(ω + r − (ω + r)λ− 2ωr)Q̂+ ωrQ̂2.

Obviously, from the above equation we can write

[(λ2 + (ω + r − 2)λ− ω − r + ωr + 1)In2 + (ω + r − (ω + r)λ− 2ωr)Q̂+ ωrQ̂2]w = ωrλ[T̂ + P̂ ]2w.

Since η is any eigenvalue of matrix Q̂, then

λ2 + (ω + r − 2)λ− ω − r + ωr + 1 + (ω + r − (ω + r)λ− 2ωr)η + ωrη2 = ωrσ2λ,

or

λ2 + ξ1(ω, r)λ+ ξ2(ω, r) = 0, (15)

where

ξ1(ω, r) = −ω r σ2 − ω η − r η + ω + r − 2,

and

ξ2(ω, r) = (r η − r + 1) (ω η − ω + 1) .

To establish convergence of the new method, it is necessary to demonstrate that the roots of polynomial (15) are

contained within the unit circle of the complex plane. Lemma 2.5 indicates that in order to accomplish this, it is

essential to satisfy two conditions: |ξ2(ω, r)| < 1 and |ξ1(ω, r)| < 1 + ξ2(ω, r).
| (r η − r + 1) (ω η − ω + 1) | < 1,

| − ω r σ2 − ω η − r η + ω + r − 2| < 1 + (r η − r + 1) (ω η − ω + 1) .

Now it is easy to check that if the parameters ω and r satisfy in relations (12) or (13), then ρ (Φ(ω, r)) < 1. □

It should be noted that determining the optimal parameters for the proposed method is a highly challenging
task. In the following we will minimize the spectral radius of iteration matrix Φ(ω, r).

Theorem 2.7. Let the conditions ((a) or (b)) of Theorem 2.6 be satisfied and η ̸= 1. Then

ropt(ω) =
ω(−ηωσ2 + ωσ2 + η2 − 2σ2 − 2η + 1 + 2σ

√
(η − 1 + σ)(η − 1− σ)(−ηω + ω − 1))

(ωσ2 + η − 1)
2 , (16)
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ropt(ω) =
ω(−ηωσ2 + ωσ2 + η2 − 2σ2 − 2η + 1− 2σ

√
(η − 1 + σ)(η − 1− σ)(−ηω + ω − 1))

(ωσ2 + η − 1)
2 , (17)

where ω is a solution of the following minimization problem

min
ω

∣∣ω ropt(ω)σ
2 + ω η + ropt(ω) η − ω − ropt(ω) + 2

∣∣ , (18)

or

ropt(ωopt) =
ωopt η − ωopt + 2

−ωopt σ2 − η + 1
, (19)

where ω is a solution of the following minimization problem

min
ω

∣∣∣∣√(ropt(ω) η − ropt(ω) + 1) (ω η − ω + 1)

∣∣∣∣ . (20)

Proof. To minimize the modulus of the roots in Eq. (15), it is necessary to choose appropriate values for the two

parameters ω and r. Specifically, the maximum value between |λ1(ω, r)| and |λ2(ω, r)|, where λ1(ω, r) and λ2(ω, r)

are the roots of quadratic Eq. (15), should be minimized. For doing this it is enough to put |λ1(ω, r)| = |λ2(ω, r)|.

Case I: According to the discussion in [20], setting the discriminant of Eq. (15) equal to zero is sufficient to

max{|λ1(ω, r)|, |λ2(ω, r)|} be minimized. So ω and ropt satisfy

ξ1(ω, ropt)
2 − 4ξ2(ω, ropt) = 0,

or

(−ω ropt σ
2 − ω η − ropt η + ω + ropt − 2)2 − 4((ropt η − ropt + 1) (ω η − ω + 1)) = 0,

or

ω2r2optσ
4 + 2ηω2roptσ

2 + 2ηωr2optσ
2 − 2ω2roptσ

2 − 2ωr2optσ
2 + η2ω2 − 2η2ωropt

+ η2r2opt + 4ωroptσ
2 − 2ηω2 + 4ηωropt − 2ηr2opt + ω2 − 2ωropt + r2opt = 0.

It can easily be seen that the above equality is equivalent by(
ωσ2 + η − 1

)2
r2opt + (2ηω2σ2 − 2ω2σ2 − 2η2ω + 4ωσ2 + 4ηω − 2ω)ropt + ω2(η − 1)2 = 0. (21)

Now solving (21) for ropt(ω) gives (16) and (17). In this case |λ(ω, ropt)| can be determined by

|λ(ω, ropt(ω))| =
∣∣∣∣ξ1(ω, ropt(ω))2

∣∣∣∣ .
On the other hand |λ(ω, ropt(ω))| is minimum if

∣∣ω ropt(ω)σ
2 + ω η + ropt(ω) η − ω − ropt(ω) + 2

∣∣, be minimized.

Case II: It is enough to put

ξ1(ω, ropt) = 0 ⇒ −ω ropt σ
2 − ω η − ropt η + ω + ropt − 2 = 0,

hence

ropt(ω) =
ω η − ω + 2

−ω σ2 − η + 1
.

In this case |λ(ω, ropt(ω))| can be determined by

|λ(ω, ropt)| =
∣∣∣∣±√

−ξ2(ω, ropt)

∣∣∣∣ .
On the other hand |λ(ω, ropt(ω))| is minimum if∣∣∣∣±√

− (ropt(ω) η − ropt(ω) + 1) (ω η − ω + 1)

∣∣∣∣ ,
be minimized. This completes the proof of the theorem. □
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Example 2.1. Suppose η =
1

2
and σ =

1

4
. By Theorem 2.7 we can obtain the optimal parameters of AOR-Like

method.
Case I: From (16) and (17) we have

ropt(ωopt) =
8(ωopt + 4 + 2

√
6ωopt − 12)ωopt

ω2
opt − 16ωopt + 64

, (22)

or

ropt(ωopt) = −
8(−ωopt − 4 + 2

√
6ωopt − 12)ωopt

ω2
opt − 16ωopt + 64

. (23)

For (22), minimization problem (18) is as follows

min
ω

∣∣∣∣∣ω
√

6(ω − 2) + 8(ω − 2)

ω − 8

∣∣∣∣∣ .
The global minimum of this problem occurs at ωopt = 2. Then (22) yields ropt =

8

3
.

For (23), minimization problem (18) is as follows

min
ω

∣∣∣∣∣ω
√

6(ω − 2) + 8(2− ω)

ω − 8

∣∣∣∣∣ .
The global minimum of this problem occurs at ωopt = 2 and ωopt =

8

3
. Then (23) yields ropt =

8

3
and ropt = 2. In

this case we obtain

(ωopt, ropt, λ(ωopt, ropt)) = (2,
8

3
, 0) and (ωopt, ropt, λ(ωopt, ropt)) = (

8

3
, 2, 0).

Case II: From (19) we have

ropt =
8(ω − 4)

ω − 8
(24)

From (24), minimization problem (18) is as follows

min
ω

√
2

2

√∣∣∣∣ (3ω − 8) (ω − 2)

ω − 8

∣∣∣∣. (25)

The global minimum of this problem occurs at ωopt = 2 and ωopt =
8

3
. Then (25) yields ropt =

8

3
and ropt = 2.

In the following, we will see that the minimum value of optimization problems (20) and (18) is zero.

Theorem 2.8. Let the conditions ((a) or (b)) of Theorem 2.6 be satisfied and η ̸= 1. Then the optimal parameters
of AOR-Like method are given in the following

ωopt =
1

1− η
, ropt =

1− η

(1− η)2 − σ2
,

ωopt =
1− η

(1− η)2 − σ2
, ropt =

1

1− η
,

and in both cases we have ρ (Φ(ωopt, ropt)) = 0.

Proof. By putting (16) in ξ1(ω, r) we have

ξ1(ω, ropt(ω)) = −
2
(
ωσ

√
−η3ω + ηωσ2 + 3η2ω − ωσ2 − η2 − 3ηω + σ2 + 2η + ω − 1 + η2ω − 2ωη + η + ω − 1

)
ωσ2 + η − 1

.

Then solving ξ1(ω, ropt(ω)) = 0 yields:

ωopt =
1

1− η
.
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Substituting the above term in (16) gives:

ropt =
1− η

(1− η)2 − σ2
.

Then the equation ξ1(ωopt, ropt)
2 − 4ξ2(ωopt, ropt) = 0 concludes ξ2(ωopt, ropt) = 0. Therefore from (15) we get

λ1(ωopt, ropt) = λ2(ωopt, ropt) = 0. Hence ρ (Φ(ωopt, ropt)) = 0. By putting (17) in ξ1(ω, r) we obtain the same

result. Putting (16) in ξ2(ω, r) yields

ξ2(ω, r) = −
(
η2ω − ωσ2 − 2ηω + η + ω − 1

)
(ηω − ω + 1)

ωσ2 + η − 1
.

Then solving ξ2(ω, ropt(ω)) = 0 yields:

ωopt =
1

1− η
, and ωopt =

1− η

(1− η)2 − σ2
.

Then by (16) and the above equation we get

ropt =
1− η

(1− η)2 − σ2
, and ropt =

1

1− η
.

Similarly we obtain ρ (Φ(ωopt, ropt)) = 0. □

2.2. Application in solving Helmholtz differential equation

Consider the following Helmholtz equation by Dirichlet boundary conditions [12, 31]:
−∂2u

∂x2
− ∂2u

∂y2
+ σ1u+ iσ2u = f, on Ω,

u = 0, on ∂Ω,

where Ω is a unique square Ω = {(x, y) | 0 < x, y < 1}, ∂Ω is the boundary of this area, σ1 and σ2 are real coefficient
functions, and i =

√
−1. In addition, we consider f to be a continuous function on Ω. Suppose n is an integer

positive number that is already known. Consider the following set of points

Ωh := {(jh, kh) | j, k = 0, 1 , . . . , n+ 1},

Ωh := {(jh, kh) | j, k = 0, 1, 2 , . . . , n},

where h = 1
n+1 indicates the length of the step. The set Ωh is the inner of this area and Ωh − Ωh will be

boundary points. Let uj,k = u(jh, kh) be the exact answer of the equation at the point (j, k) and Uj,k be an
approximation of it. To approximate the second derivative u rather than x and y, we get help from the following
central approximations

∂2u(x, y)

∂x2
|(x=jh,y=kh) ≃

Uj−1,k − 2Ujk + Uj+1,k

h2
,

∂2u(x, y)

∂y2
|(x=jh,y=kh) ≃

Uj,k−1 − 2Ujk + Uj,k+1

h2
.

Therefore, the given problem is discretized as follows

−Uj−1,k − 2Ujk + Uj+1,k

h2
− Uj,k−1 − 2Ujk + Uj,k+1

h2
+ σ1Ujk + iσ2Ujk = fjk, j, k = 1, 2, . . . , n.

This implies

(4 + h2(σ1 + iσ2))Ujk − Uj−1,k − Uj+1,k − Uj,k−1 − Uj,k+1 = h2fjk, j, k = 1, 2, . . . , n.

These equations can be written as follows

j = 1,


k = 1 : (4 + h2(σ1 + iσ2))U11 − U01 − U21 − U10 − U12 = h2f11,

k = 2 : (4 + h2(σ1 + iσ2))U12 − U02 − U22 − U11 − U13 = h2f12,
...

k = n : (4 + h2(σ1 + iσ2))U1n − U0n − U2n − U1,k−1 − U1,n+1 = h2f1n,

203



M. Dehghan et al., AUT J. Math. Comput., 5(3) (2024) 195-215, DOI:10.22060/AJMC.2024.22444.1159

j = 2,


k = 1 : (4 + h2(σ1 + iσ2))U21 − U11 − U31 − U20 − U22 = h2f21,

k = 2 : (4 + h2(σ1 + iσ2))U22 − U12 − U32 − U21 − U23 = h2f22,
...

k = n : (4 + h2(σ1 + iσ2))U2n − U1n − U3n − U2,n−1 − U2,n+1 = h2f2n,

...

j = n,



k = 1 : (4 + h2(σ1 + iσ2))Un1 − Un−1,1 − Un+1,1 − Un0 − Un2 = h2fn1,

k = 2 : (4 + h2(σ1 + iσ2))Un2 − Un−1,2 − Un+1,2 − Un1 − Un3 = h2fn2,
...

k = n : (4 + h2(σ1 + iσ2))Unn − Un−1,n − Un+1,n − Un,n−1 − Un,n+1 = h2fnn.

We obtain by using boundary conditions

j = 1,


k = 1 : (4 + h2(σ1 + iσ2))U11 − 0− U21 − 0− U12 = h2f11,

k = 2 : (4 + h2(σ1 + iσ2))U12 − 0− U22 − U11 − U13 = h2f12,
...

k = n : (4 + h2(σ1 + iσ2))U1n − 0− U2n − U1,k−1 − 0 = h2f1n,

j = 2,


k = 1 : (4 + h2(σ1 + iσ2))U21 − U11 − U31 − 0− U22 = h2f21,

k = 2 : (4 + h2(σ1 + iσ2))U22 − U12 − U32 − U21 − U23 = h2f22,
...

k = n : (4 + h2(σ1 + iσ2))U2n − U1n − U3n − U2,n−1 − 0 = h2f2n,

...

j = n,


k = 1 : (4 + h2(σ1 + iσ2))Un1 − Un−1,1 − 0− 0− Un2 = h2fn1,

k = 2 : (4 + h2(σ1 + iσ2))Un2 − Un−1,2 − 0− Un1 − Un3 = h2fn2,
...

k = n : (4 + h2(σ1 + iσ2))Unn − Un−1,n − 0− Un,n−1 − 0 = h2fnn.

Now these equations can be represented in the following matrix form (γ := 2 + h2( 12σ1 +
i
2σ2))

γU11 − U21 γU12 − U22 · · · γU1n − U2n

−U11 + βU21 − U31 −U12 + γU22 − U32 · · · −U1n + γU2n − U3n

...
...

. . .
...

−Un−1,1 + γUn1 −Un−1,2 + γUn2 · · · −Un−1,n + γUnn



+


γU11 − U12 −U11 + γU12 − U13 · · · −U1,n−1 + γU1n

γU21 − U22 −U21 + γU22 − U23 · · · −U2,n−1 + γU2n

...
...

. . .
...

γUn1 − Un2 −Un1 + γUn2 − Un3 · · · −Un,n−1 + γUnn

 = h2


f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fn1 fn2 · · · fnn

 ,

or 

γ −1 0 . . . 0
−1 γ −1 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . . −1

0 . . . . . . −1 γ



U11 U12 . . . U1n

U21 U22 . . . U2n

...
. . .

...
Un1 Un2 . . . Unn

+


U11 U12 . . . U1n

U21 U22 . . . U2n

...
. . .

...
Un1 Un2 . . . Unn




γ −1 0 . . . 0
−1 γ −1 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . . −1

0 . . . . . . −1 γ



= h2


f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fn1 fn2 · · · fnn

 ,
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or
AU + UA = h2F, (26)

where

U =


U11 U12 . . . U1n

U21 U22 . . . U2n

...
...

...
...

Un1 Un2 . . . Unn


n×n

, F =


f11 f12 . . . f1n
f21 f22 . . . f2n
...

...
...

...
fn1 fn2 . . . fnn


n×n

, A =



γ −1 0 . . . 0
−1 γ −1 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . . −1

0 . . . . . . −1 γ


n×n

.

It is clear that solving the Helmholtz equation by finite difference method has led to solving a Lyapunov matrix
equation with a complex coefficient matrix. Moreover equation (26) is a special case of (1) studied here. Note that
the matrix of coefficients of this Lyapunov equation can be split as follows:

A = W + iT,

where

W =



2 + h2

2 σ1 −1 0 . . . 0

−1 2 + h2

2 σ1 −1 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . . −1

0 . . . . . . −1 2 + h2

2 σ1


, T =



h2

2 σ2 0 0 . . . 0

0 h2

2 σ2 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 h2

2 σ2


.

3. Test problems

All numerical experiments in this section were carried out using MATLAB software, running on a computer equipped
with an Intel (R) Pentium (R) CPU N3700 (1.60 GHz) and 4 GB RAM.

Example 3.1. Here we will solve matrix equation

AX +XB + ((15 + 0.5i)In)︸ ︷︷ ︸
N1

X((15 + 0.5i)In︸ ︷︷ ︸
M1

)T + ((6− 0.2i)In)︸ ︷︷ ︸
N2

X((6− 0.2i)In︸ ︷︷ ︸
M2

)T = C, (27)

where A = W + iT , B = AT = WT + iTT with

W = Im ⊗ Vm + Vm ⊗ Im − π2In, (n = m2),

T = 10πIn + µ (Im ⊗ Vm + Vm ⊗ Im) ,

and

Vm =
1

h2
Tridiagonal(−1, 2,−1)m×m,

with h = 1/(m + 1) and µ is a positive parameter with values µ = 1 and µ = 10. Also consider right hand side
matrix C such that X⋆ = (x⋆

i,j) with

x⋆
i,j = sin(x(i)) + sin(y(j)), i, j = 1, 2, . . . ,m2, (28)

is exact solution of matrix equation (27), where xi = −2+4(i−1)/(m2−1) and yj = −2+4(j−1)/(m2−1), i, j =
1, 2, . . . ,m2. The stopping criteria for iterations is

S(k) ≤ 5× 10−5, (29)

where

S(k) :=

∥∥AX(k) +X(k)B +N1X
(k)M1 +N2X

(k)M2 − C
∥∥
F∥∥AX(0) +X(0)B +N1X(0)M1 +N2X(0)M2 − C

∥∥
F

,

and X(0) is an initial guess that here is zero matrix. In each step of new method we solve two standard real Sylvester
matrix equations via Bartels-Stewart algorithm [7].

205



M. Dehghan et al., AUT J. Math. Comput., 5(3) (2024) 195-215, DOI:10.22060/AJMC.2024.22444.1159

Table 1: The comparison of iteration number (IT) and CPU time for Example 3.1.

Sizes of coefficient matrices 64× 64 100× 100 225× 225 400× 400

µ = 1

SOR-Like

αexp 0.1143 0.1143 0.1143 0.1143

IT 43 49 59 65

CPU(s) 0.830457 2.699985 34.983288 197.890202

AOR-Like

ωexp 0.09 0.09 0.09 0.09

rexp 0.07 0.07 0.07 0.07

IT 21 22 24 35

CPU(s) 0.466266 1.153980 10.788853 103.171439

MHSS [38]

αexp = βexp 260 260 260 260

IT 16 16 25 37

CPU(s) 0.632790 1.298898 24.332186 217.143481

GMHSS [38]

αexp = βexp 260 260 260 260

τexp = θexp 270 270 270 270

IT 14 15 23 35

CPU(s) 0.439721 1.313612 21.689607 203.071587

Table 2: The comparison of iteration number (IT) and CPU time for Example 3.1.

Sizes of coefficient matrices 64× 64 100× 100 225× 225 400× 400

µ = 10

SOR-Like

αexp 0.05 0.05 0.05 0.05

IT 61 123 145 158

CPU(s) 1.215940 6.307189 68.495753 513.966249

AOR-Like

ωexp 0.02 0.02 0.02 0.02

rexp 0.09 0.09 0.09 0.09

IT 20 21 25 36

CPU(s) 0.546207 1.024469 10.495669 107.481687

MHSS [38]

αexp = βexp 730 730 730 730

IT 23 24 26 30

CPU(s) 0.712993 2.032919 23.640414 186.367522

GMHSS [38]

αexp = βexp 1060 1060 1060 1060

τexp = θexp 70 70 70 70

IT 9 9 12 17

CPU(s) 0.276629 0.759973 11.922190 99.080614

Table 1 presents the numerical results obtained from our experiments, including the running time and the residual
error for AOR-Like method, SOR-Like method [20], MHSS and the GMHSS methods [38]. As shown in Table 1,
the method under consideration exhibits a shorter time to reach the desired level of accuracy compared to SOR-Like,
MHSS and the GMHSS methods. This indicates the effectiveness and efficiency of the new method. In fact the
AOR-Like method was found to be faster than the method in [20].
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Tables 1 and 2 present the numerical results of MHSS and GMHSS methods. The AOR-Like method consistently
achieves faster convergence to the exact solution of the matrix equation compared to other methods, as demonstrated
by the data presented. The validity of the assumption can be reinforced by examining the data presented in these
tables.

Figures 1 and 2 illustrate the approximation of the optimal parameters for both methods when the problem size is
225×225. The optimal parameter for the method in [20] was determined to be αopt ≈ 0.1 for µ = 1 and αopt ≈ 0.05
for µ = 10, while for the AOR-Like method, the optimal parameters were found to be ωopt ≈ 0.09, ; ropt ≈ 0.08
for µ = 0.01, 0.1, 1 and ωopt ≈ 0.02; ropt ≈ 0.09 for µ = 10. It should be noted that the optimal parameters were
obtained experimentally by minimizing the number of iterations in Figs. 1 and 2. Moreover, the optimal parameters
for both methods were observed to be fixed with increasing problem size, as can be seen in Table 1.

Figure 1: The parameter α versus iteration numbers for FRSI (SOR-Like) method for Example 3.1.

Figure 2: The parameters ω and r versus iteration numbers for AOR-Like for Example 3.1.

Figure 3 shows the relationship between the parameters ω and r and the spectral radius of the iteration matrix
for AOR-Like method.

Figure 3: The parameters ω and r versus spectral radius of iteration matrix for AOR-Like for Example 3.1.

In Figure 4, we can see the approximate solutions for the imaginary and real parts obtained using the AOR-Like
method after 2, 5, and 20 iterations. It can be observed that by increasing the number of iterations, the sequence of
matrices {X(k)}∞k=0 converges to the real solution (28).
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Figure 4: Approximate solutions for imaginary and real parts with size n × n = 100 × 100; Top (after 20 iterations); Middle (after 40
iterations); Bottom (after 80 iterations) for Example 3.1.

On the other hand, Figure 5 displays the eigenvalue distribution of SOR-like iteration matrix for problem sizes
of 500 × 500 and different values of the parameter µ. Based on the information presented in the figure, it can be
concluded that for µ = 0.01, the eigenvalues of the iteration matrix of the AOR-Like method approach zero. This
suggests that in this specific scenario, the method exhibits a high convergence speed.

Figure 5: The eigenvalue distribution of the iteration matrix for Example 3.1.

The results clearly demonstrate that the method being evaluated outperforms the SOR-Like, MHSS, and GMHSS
methods in terms of the time required to achieve the desired level of accuracy. This evidence supports the notion
that the new method is effective and efficient.

Example 3.2. Consider the equation

(W + iT )X +X(W + iT )T + v
(
N1XNT

1 +N2XNT
2

)
= C,

where

T =



10 1 1 −1 2 O
1 10 1 1 −1 2
1 1 10 1 1 −1 2
−1 1 1 10 1 1 −1 2

2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 2

. . .
. . .

. . .
. . .

. . .
. . .

. . . −1

. . .
. . .

. . .
. . .

. . .
. . . 1

2 −1 1 1 10 1
O 2 −1 1 1 10


n×n

, W =



2 0.1 0.2 0.3 0.1 O
0.1 2 0.1 0.2 0.3 0.1
0.2 0.1 2 0.1 0.2 0.3 0.1
0.3 0.2 0.1 2 0.1 0.2 0.3 0.1

0.1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0.1
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0.1

0.1
. . .

. . .
. . .

. . .
. . .

. . . 0.3

. . .
. . .

. . .
. . .

. . .
. . . 0.2

0.1 0.3 0.2 0.1 2 0.1
O 0.1 0.3 0.2 0.1 2


n×n

,
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N1 =



2 −0.1 0.3 O
0.3 2 −0.1 0.3
−0.2 0.3 2 −0.1 0.3

−0.2 0.3 2 −0.1 0.3
−0.2 0.3 2 −0.1 0.3

−0.2
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 0.3

. . .
. . .

. . . −0.1
O −0.2 0.3 2


n×n

,

and

N2 =



1 0.2 0.1 O
0.3 1 0.2 0.1
−0.1 0.3 1 0.2 0.1

−0.1 0.3 1 0.2 0.1
−0.1 0.3 1 0.2 0.1

−0.1
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 0.2

. . .
. . .

. . . 0.1
O −0.1 0.3 1


n×n

.

Also right hand side matrix C is such that Z = (zi,j) with

zi,j = sin2(xi) + cos2(yj), i, j = 1, 2, . . . , n, (30)

can be exact solution, where xi = −1 + 2(i− 1)/(n− 1) and yj = −1 + 2(j − 1)/(n− 1), i, j = 1, 2, . . . , n.
We performed numerical experiments to solve the matrix equation for various values of v and n. The resulting

numerical results, including running time and residual error, are presented in Tables 3 and 4.

Table 3: The iteration number (IT) and CPU time for SOR-Like method for Example 3.2.

Sizes of coefficient matrices 40× 40 80× 80 160× 160 320× 320

v = 1

αexp 0.16 0.16 0.16 0.16

IT 27 27 27 27

CPU(s) 0.294009 0.975645 5.119216 36.610712

S(.) 3.0621× 10−5 3.1146× 10−5 3.1373× 10−5 3.1486× 10−5

v = 0.1

αexp 0.18 0.18 0.18 0.18

IT 62 62 59 59

CPU(s) 0.658270 2.195957 11.298851 72.903858

S(.) 3.9238× 10−5 3.9264× 10−5 4.9950× 10−5 4.9785× 10−5

v = 0.01

αexp 0.18 0.18 0.18 0.18

IT 62 62 62 62

CPU(s) 0.647823 2.603903 15.073012 92.159660

S(.) 4.5062× 10−5 4.5127× 10−5 4.5114× 10−5 4.5108× 10−5

v = 0.001

αexp 0.18 0.18 0.18 0.18

IT 62 62 62 62

CPU(s) 0.636985 2.308290 15.425496 92.797011

S(.) 4.5124× 10−5 4.5189× 10−5 4.5176× 10−5 4.5170× 10−5
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Table 4: The iteration number (IT) and CPU time for AOR-Like method for Example 3.2.

Sizes of coefficient matrices 40× 40 80× 80 160× 160 320× 320

v = 1

ωexp 0.18 0.18 0.18 0.18

rexp 0.15 0.15 0.15 0.15

IT 24 24 24 24

CPU(s) 0.301654 0.912333 4.654909 30.080706

S(.) 3.6749× 10−5 2.7627× 10−5 2.6201× 10−5 2.5573× 10−5

v = 0.1

ωexp 0.15 0.15 0.15 0.15

rexp 0.25 0.25 0.25 0.25

IT 44 44 44 44

CPU(s) 0.503273 2.160103 11.393349 63.145133

S(.) 4.3809× 10−5 4.2734× 10−5 4.2557× 10−5 4.2463× 10−5

v = 0.01

ωexp 0.15 0.15 0.15 0.15

rexp 0.25 0.25 0.25 0.25

IT 44 44 44 44

CPU(s) 0.538805 1.801776 10.737216 58.381569

S(.) 4.8505× 10−5 4.6817× 10−5 4.6428× 10−5 4.6233× 10−5

v = 0.001

ωexp 0.15 0.15 0.15 0.15

rexp 0.25 0.25 0.25 0.25

IT 44 44 44 44

CPU(s) 0.526946 1.504894 11.878253 49.306928

S(.) 4.8556× 10−5 4.6861× 10−5 4.6470× 10−5 4.6274× 10−5

Our experiments led us to approximate the optimal parameter for SOR-like method, which we denote as ωopt.
This value was obtained experimentally by minimizing the spectral radius of SOR-like iteration matrix. In Tables 3
and 4, we used ωopt to obtain our numerical results, and we observed that the optimal parameter remained fixed as
we increased the problem size. Furthermore, we found that SOR-like method was slower than AOR-like method, as
shown in these tables.
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Figure 6: The parameter α versus spectral radius of iteration matrix for FRSI (SOR-Like) for Example 3.2.

Figure 6 shows the parameter α versus spectral radius of iteration matrix for FRSI (SOR-Like) for this test
problem by v = 0.001, 0.01, 0.1 and v = 1.

Figure 7: The eigenvalue distribution of the iteration matrix for Example 3.2.

We also investigated the eigenvalue distribution of AOR-like iteration matrix for a fixed size of 500 × 500 and
various values of the parameter v, and the results are plotted in Figure 7. Based on the information presented in the
figure, it can be concluded that for v = 1, the eigenvalues of the iteration matrix of the AOR-Like method approach
zero. This suggests that in this specific scenario, the method exhibits a high convergence speed.
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Figure 8: Approximate solutions for imaginary and real parts with size n × n = 100 × 100; Top (after 10 iterations); Middle (after 20
iterations); Bottom (after 40 iterations) for Example 3.2.

In addition, we plotted the approximate solutions for the real and imaginary parts of AOR-like method after 10,
20, and 40 iterations in Figure 8. We observed that the sequence of matrices X(0) converged to the real solution
(30) as the number of iterations increased.

Table 5: The iteration number (IT) and CPU time for MHSS method [38] for Example 3.2.

Sizes of coefficient matrices 40× 40 80× 80 160× 160 320× 320

v = 1

αexp = βexp 12 12 13 13

IT 19 19 19 19

CPU(s) 0.245659 1.103787 5.214515 72.710017

S(.) 3.3682× 10−5 3.4671× 10−5 4.9147× 10−5 4.9388× 10−5

v = 0.1

αexp = βexp 7 7 7.2 7.2

IT 18 18 18 18

CPU(s) 0.253777 0.866306 5.581671 71.584671

S(.) 3.9207× 10−5 3.9067× 10−5 3.8841× 10−5 3.8801× 10−5

v = 0.01

αexp = βexp 6 6 6.3 6.3

IT 18 18 18 18

CPU(s) 0.248516 0.854497 4.997806 75.380239

S(.) 3.9981× 10−5 4.0067× 10−5 3.9212× 10−5 3.9217× 10−5

v = 0.001

αexp = βexp 6 6 6.3 6.3

IT 18 18 18 18

CPU(s) 0.260493 0.855640 7.508921 70.927791

S(.) 3.9968× 10−5 4.0054× 10−5 3.9200× 10−5 3.9205× 10−5
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Table 6: The iteration number (IT) and CPU time for GMHSS method [38] for Example 3.2.

Sizes of coefficient matrices 40× 40 80× 80 160× 160 320× 320

v = 1

αexp = βexp 14 14 14 14

τexp = θexp 4 4 4 4

IT 13 13 13 13

CPU(s) 0.192197 0.598336 3.376144 47.733990

E(.) 2.7820× 10−5 2.8577× 10−5 2.8952× 10−5 2.9139× 10−5

v = 0.1

αexp = βexp 10.1 10.1 10.1 10.1

τexp = θexp 1.4 1.4 1.4 1.4

IT 9 9 9 9

CPU(s) 0.145050 0.420019 2.186261 35.791883

E(.) 1.8181× 10−5 1.8961× 10−5 1.9342× 10−5 1.9530× 10−5

v = 0.01

αexp = βexp 10.1 10.1 10.1 10.1

τexp = θexp 1.4 1.4 1.4 1.4

IT 9 9 9 9

CPU(s) 0.140525 0.413385 2.312785 35.402080

E(.) 1.6187× 10−5 1.6880× 10−5 1.7219× 10−5 1.7386× 10−5

v = 0.001

αexp = βexp 10.1 10.1 10.1 10.1

τexp = θexp 1.4 1.4 1.4 1.4

IT 9 9 9 9

CPU(s) 0.132953 0.414135 2.338413 36.057047

E(.) 1.6175× 10−5 1.6867× 10−5 1.7206× 10−5 1.7373× 10−5

Tables 5 and 6 present numerical results for MHSS and GMHSS methods, including optimal parameters, number
of iterations, time required for calculation, and relative error. AOR-Like and GMHSS methods demonstrate faster
performance than the other methods analyzed in this study.

The provided evidence from Tables 3–6 strengthens the validity that AOR-Like method being evaluated surpasses
the SOR-Like and MHSS methods in terms of the time needed to reach the desired accuracy level. This finding
supports the claim that the new method is effective and efficient, providing additional validation for the assumption.
It is worth noting that GMHSS method may outperform AOR-Like method in certain scenarios. Overall, the results
from the two examples provided indicate that the new method proposed in this article is efficient.

4. Conclusion

Our work presents a novel and efficient method, called AOR-Like method, for solving the generalized Sylvester
matrix equation. This equation has the form AX +XB +

∑m
j=1 NjXMj = C, where A,B,Nj ,Mj(j = 1, . . . ,m),

C ∈ Cn×n are known matrices and X ∈ Cn×n is the unknown matrix to be determined. We provide a convergence
theorem for AOR-Like method and analyze the procedure in detail. Additionally, we discuss how to discover the
optimal parameters for the method. Finally, we test the effectiveness of our method by solving a test problem.
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