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ABSTRACT: This paper studies a repetitive polling game played on an n-vertex
graph G. At first, each vertex is colored, Black or White. At each round, each
vertex (simultaneously) recolors itself by the color of the majority of its closed
neighborhood. The variants of the model differ in the choice of a particular tie-
breaking rule. We assume the tie-breaking rule is Prefer-White and we study the
relation between the notion of “dynamic monopoly” and “vertex cover” of G. In
particular, we show that any vertex cover of G is a dynamic monopoly or reaches
a 2−periodic coloring. Moreover, we compute dyn(G) for some special classes of
graphs including paths, cycles and links of some graphs.
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1. Introduction

In distributed computing on point-to-point networks, faulty processors can cause misbehavior in their neighbors.
To restrict their influence and limit the overall detriment effected by faulty processors, the idea of majority-based
voting models is often used. Voting models have been applied as a decision tool in some agreement protocols
(Byzantine Agreement, Consensus, Interactive Consistency), distributed database inconsistency resolution protocols
management system, key distribution in security and discrete time dynamical systems. However, in point-to-point
systems, majority-voting may not be able to stop the diffusion of defective behavior of faulty elements (sometimes
these elements are few but well-placed). The dynamics, with respect to faults, of a system using majority-based
voting can be described as a repetitive polling game on graphs (see [8, 18]).

Let G = (V,E) be a simple connected graph with the vertex set V = {v1, . . . , vn} modeling the topology of
the system. Consider the following repetitive polling game on G. At round 0, each vertex v is colored the color
x0(v), which may be Black (non-faulty) or White (faulty). At each round, each vertex (simultaneously) looks at
the current colors of vertices in its (closed) neighborhood and adopts the more common color (namely, the one
occurring at the majority of its neighbors) as its new color.
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Let us give more details. Denote the closed neighborhood of the vertex v by NG[v]; that is, NG(v) ∪ {v}. The
global state of the graph after round t is represented as a vector Xt = (xt(v1), . . . , x

t(vn)), where xt(v) is the color
of vertex v after round t. For each vertex v, define Wt(v) = |{w ∈ NG[v] ; xt(w) = White }|, then at round r + 1
the vertex v will be White if

Wr(v) ≥ ⌈degG(v) + 1

2
⌉ (1)

and it will be Black if (1) does not hold. Note that if at round t exactly half of the elements of NG[v] are colored
White and half of it are colored Black, then we say there is a tie. Two well-known tie-breaking rules are “Prefer-
White” and “Prefer-Current”; the first, in case of a tie, recolors the vertex White (xt+1(v) = White), and the latter
does not change the color (xt+1(v) = xt(v)). Our tie-breaking rule is “Prefer-White”. An example of the resulting
process is illustrated in Figure 1. Other types of the above polling game, such as the case that the tie-breaking rule
is “Prefer-Current” could be found in [16, 17].

In this paper, we focus on cases where the computation converges into the all-White monochromatic configu-
ration, this corresponds to the status when the whole system will finally have a faulty manner. Let S ⊆ V and
X0 = (x0(v1), . . . , x

0(vn)) be an initial coloring in which x0(v) =White if and only if v ∈ S. Let Sr = {v ∈
V ; v is colored White at round r}. We say that S is a dynamic monopoly, abbreviated dynamo, if there exists r
such that Sr = V. We show the smallest size of any dynamos with dyn(G). The concept of dynamo was studied
in [14, 17, 18, 20, 22]. The minimum size of a dynamo has been widely studied on different graph classes (see
[9, 8, 14]), which are motivated by different literatures, such as statistical physics, viral marketing, and fault-local
mending in distributed systems. Beside the mentioned results, reversible and irreversible dynamic monopolies were
studied in [4, 5, 6, 7]. Related problems were studied from different perspectives and under different names in
[1, 2, 3, 12, 15, 19, 21]. With a close look at all the aforementioned references, it can be said that the concept
of dynamic monopoly is defined differently from one research to another which is due to the existence of different
versions of the polling game. The definition of dynamic monopoly considered in this research is based on a version
of the game called Prefer-White, Self-Included.

X0 X1 X2 X3

Figure 1: An example for a multi round repetitive polling game

The paper is organized as follows. In Section 2, we study the relation between the notion of ”vertex cover” and
the notion of ”dynamic monopoly” for an arbitrary graph G. To seek this purpose, first, we examine this relation in
some special classes of graphs including paths, cycles and stars (see Proposition 2.3) and, in particular, we compute
dyn(G) in each case (Corollary 2.4). Next, we study an arbitrary connected graph G and show that any vertex
cover is a dynamic monopoly or reaches a 2−periodic coloring (see Theorem 2.6). In particular, any vertex cover
of G is a dynamic monopoly provided that G does not have any even cycle (Corollary 2.7). Next, we find a bound
for dyn(G) when G is a tree (Corollary 2.7). In Section 3, we relate the problem of finding dyn(G) to the problem
of finding dyn(G1),dyn(G2) when G is a link of G1 and G2 via a single edge {v, w} (v ∈ V (G1), w ∈ V (G2) (See
Theorems 3.1, 3.2, 3.3). Finally, we assume that G is a link of two cycles or two paths, and in each case we compute
dyn(G) (see Subsections 3.1, 3.2 and 3.3).

2. Dynamic monopolies and vertex covers

Let G = (V,E) be a graph on the vertex set V = {v1, . . . , vn}. Following the notations of introduction, for any initial
coloring X0 = (x0(v1), . . . , x

0(vn)), let S = {v ; x0(v) = White} and corresponding to Xr, let Sr = {v ∈ V ; v
is colored White at round r} for each r ∈ N. By [11, Theorem 2.1] (see also [10]), Sr = Sr+2 for some r ∈ N. We
say Xr is a fixed coloring when Sr = Sr+1 and Xr is a 2-periodic coloring when Sr = Sr+2 ̸= Sr+1. So, S is a
dynamic monopoly when there exists r ∈ N such that Xr is the fixed coloring and Sr = V . Also, the repetitive
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polling game on G is called a fixed coloring game if for each initial coloring X0 there exists r ∈ N such that Xr is a
fixed coloring. The next theorem shows the role of even cycles in characterizing fixed coloring games. It is a direct
consequence of [13, Theorem 2.2], but for the convenience of the reader, we will state its proof briefly.

Theorem 2.1. Let X0 = (x0(v1), . . . , x
0(vn)) be a 2-periodic coloring for the repetitive polling game on G = (V,E).

Then G has a Black-White alternating even cycle.

Proof. Since X0 is a 2−periodic coloring, S = S2 ̸= S1. This shows that (S1 \ S) ∪ (S \ S1) ̸= ∅. For each v ∈ V
if deg(v) = 1 and v ∈ Sr for some r ∈ N, then v ∈ Sr+1. Therefore, each vertex v ∈ (S1 \ S) ∪ (S \ S1) has degree
more than 1 and NG(v) can be written as

NG(v) = (NG(v) \ (S ∪ S1))∪̇(NG(v) ∩ S ∩ S1)∪̇(NG(v) ∩ (S \ S1))∪̇(NG(v) ∩ (S1 \ S)) (2)

According to the rule of the game, by comparing deg(v) with the cardinalities of the sets in Equation (2), one can
see that

v ∈ S1 \ S ⇒ |NG(v) ∩ (S \ S1)| ≥ 2 (3)

and
v ∈ S \ S1 ⇒ |NG(v) ∩ (S1 \ S)| ≥ 2. (4)

Choose vi0 ∈ S1 \ S. By (3), we can choose distinct v+i1 , v−i1 ∈ S \ S1. So, v−i1 , vi0 , v+i1 is a Black-White
alternating simple path with 3 vertices. To find the desired cycle, we follow the following steps.

Step 1. As v+i1 , v−i1 ∈ S \ S1, by (4), we can select v+i2 ∈ (NG(v+i1) ∩ (S1 \ S)) \ {vi0} and v−i2 ∈ (NG(v−i1) ∩
(S1 \ S)) \ {vi0}. If v+i2 = v−i2 , then v−i2 , v−i1 , vi0 , v+i1 , v+i2 forms a Black-White alternating cycle of
length 4. If v+i2 ̸= v−i2 , we get a Black-White alternating simple path with 5 vertices.

Step 2. Let j ≥ 2 and suppose we have not found the desired cycle by the end of (j − 1)th step. This in particular
shows that v−ij , . . . , vi0 , . . . , v+ij is a simple Black-White alternating path with 2j + 1 vertices. Let us
assume v−ij , v+ij ∈ S1 \ S (The other situation can be discussed in the same way). By (3), we can choose
v+ij+1

∈ (NG(v+ij )∩(S\S1))\{v+ij−1
} and v−ij+1

∈ (NG(v−ij )∩(S\S1))\{v−ij−1
}. Suppose v+ij+1

= v−ij+1

or {v+ij+1 , v−ij+1} ∩ {v−ij , . . . , vi0 , . . . , v+ij} ̸= ∅. Since v−ij , . . . , vi0 , . . . , v+ij is a simple Black-White
alternating path, the walk v−ij+1 , v−ij , . . . , vi0 , . . . , v+ij , v+ij+1 contains a Black-White alternating cycle of
even length. If v+ij+1

̸= v−ij+1
and {v+ij+1

, v−ij+1
} ∩ {v−ij , . . . , vi0 , . . . , v+ij} = ∅, we get a Black-White

alternating simple path with 2j + 3 vertices.

Because the number of graph vertices is finite, the above process will stop with a successful output. □

Let G = (V,E) be a graph on the vertex set V and T ⊆ V . We say that T is a vertex cover of G if for each
{i, j} ∈ E we have {i, j} ∩ T ̸= ∅. If T is minimal with respect to inclusion, then T is called minimal vertex cover
of G. Let

DM(G) = {S ⊆ V ; S is a dynamic monopoly of G}

and
VC(G) = {T ⊆ V ; T is a vertex cover of G}.

It would be interesting to know the relation between the notions of dynamic monopoly and vertex cover. In this
section, we study this problem.

Lemma 2.2. Let G = (V,E) be a graph and S be a dynamic monopoly of it. If v and w are two vertices of degree
at most 2 and {v, w} ∈ E, then S ∩ {v, w} ≠ ∅.

Proof. Let X0 and S be as above. Suppose that v and w are two vertices of degree at most 2 and {v, w} ∈ E.
One can easily see that if S ∩ {v, w} = ∅, then Sr ∩ {v, w} = ∅ for each r ∈ N. So, S is not a dynamic monopoly
of G. □

Although the first lemma is simple, it plays a key role in finding dyn(G). The next proposition shows the
relation between DM(G) and VC(G) when G is a cycle, a path or a star graph.

Proposition 2.3. (1) Let Cn be a cycle with n vertices. If n is an odd number, then VC(Cn) = DM(Cn) and if n
is an even number, then the set of dynamic monopolies coincides with the set of non-minimal vertex covers of G.
(2) Let Pn be a path with n vertices. Then VC(Pn) = DM(Pn).
(3) Let Kn,1 be the star graph with n+ 1 vertices where n > 1. Then VC(Kn,1) ⊊ DM(Kn,1).
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Proof. (1) Consider a cycle graph Cn = (V,E) where

V = {v1, v2, . . . , vn}, E = {{vi, vi+1}; 1 ≤ i ≤ n− 1} ∪ {{v1, vn}}

(for simplifying the notation, we assume that vn+1 = v1 and v0 = vn). We claim that S ⊆ V is a dynamo if
and only if the following conditions hold:

(i) For each vi ∈ V − S, {vi−1, vi+1} ⊆ S.

(ii) There exists vi ∈ S such that {vi+1, vi−1} ∩ S ̸= ∅.

To prove the claim, first suppose that S ⊆ V is a dynamo and vi ∈ V − S for some 1 ≤ i ≤ n−1. If vi−1 ∈ V − S
or vi+1 ∈ V − S, then by Lemma 2.2, S is not a dynamic monopoly of Cn. Now assume that for each vi ∈ S
both vi−1 and vi+1 belong to V − S. So, one of the following situations happen:

(a) At each round all vertices of the graph change their color and in particular n is even. In this case, S is
not a dynamo.

(b) There exists a round t such that all vertices of the graph are Black at each round k ≥ t. Again, S is not a
dynamo.

Conversely, suppose that two conditions (i) and (ii) are satisfied. We prove S is a dynamo. Let X0 =
(x0(v1), . . . , x

0(vn)) be an initial coloring that x0(vi) = White if and only if vi ∈ S. Let S0 = S and assume
that Sr is defined as before. By induction on r, we prove that for each r ≥ 0 the following statement holds.

∀vi ∈ V (vi ̸∈ Sr ⇒ {vi−1, vi+1} ⊆ Sr and vi ∈ Sr+1). (5)

Let i = 0 and suppose vi ̸∈ S0. Then by (i), {vi−1, vi+1} ⊆ S0. As deg(vi) = 2, we conclude vi ∈ S1. So,
(5) holds when i = 0. Now assume r > 0 and (5) holds for each 0 ≤ s < r. If vi ̸∈ Sr, then by induction
hypothesis vi ∈ Sr−1 which implies that {vi−1, vi+1} ∩ Sr−1 = ∅. Since vi−1 ̸∈ Sr−1 and vi+1 ̸∈ Sr−1, by
induction hypothesis, {vi−1, vi+1} ⊆ Sr. Using deg(vi) = 2, we see vi ∈ Sr+1. Hence (5) holds for r + 1.

Next, by (ii) and without loss of generality, we assume that {v1, v2} ⊆ S = S0. It is clear that {v1, v2} ⊆ Sr

for each r ∈ N. We claim that vi ∈ Sr for each i ≥ 3 and each r ≥ i − 2. To prove the claim, we apply an
inductive process. Let i = 3. If v3 ∈ S0, then it is clear that v3 ∈ Sr for each r ∈ N. Assume that v3 ̸∈ S0.
By (5), v3 ∈ S1. As v2 ∈ Sr for each r ∈ N and deg(v3) = 2, we deduce that v3 ∈ Sr for each r ∈ N. So the
claim is proved for i = 3. Suppose that i > 3 and the claim has been proved for each 3 ≤ j < i. This shows
that vi−1 ∈ Sr for each r ≥ i − 3. As deg(vi) = 2, vi ∈ Sr for each r ≥ i − 2 when vi ∈ Si−3. Assume that
vi ̸∈ Si−3. By (5), vi ∈ Si−2. So, the claim is proved by induction hypothesis and deg(vi) = 2. According to
the above claim, we can say V = Sn−2. Hence, S is a dynamic monopoly.

On the other hand, T ⊆ V is a vertex cover of Cn if and only if for every vi ∈ V − T , {vi−1, vi+1} ⊂ T .
Furthermore, if n is an odd number and T ⊆ V is a vertex cover of Cn, then there exists vi ∈ T such that
{vi+1, vi−1} ∩ T ̸= ∅. So (i) and (ii) hold and T is a dynamic monopoly. If n is an even number and T ⊆ V is
a vertex cover of Cn, then as previous case, (i) holds. But (ii) holds if and only if T is a non-minimal vertex
cover of Cn. So, the conclusion follows.

(2) By a similar argument as case 1, the assertion follows.

(3) Consider a star graph Kn,1 = (V,E) where V = {v0, v1, . . . , vn}, E = {{v0, vi}; 1 ≤ i ≤ n}. One can check that

VC(Kn,1) = {{v0} ∪ T ; T ⊆ {v1, . . . , vn}} ∪ {{v1, . . . , vn}}.

One can easily check that every element of VC(Kn,1) is a dynamic monopoly. On the other hand, each A ⊂ V
which has at least ⌈n

2 ⌉ elements is a dynamic monopoly. □

The next corollary is an immediate consequence of Proposition 2.3.

Corollary 2.4. dyn(Cn) = ⌈n
2
⌉, dyn(Pn) = ⌊n

2
⌋, dyn(Kn,1) = 1.

In general, there is no special relation between dynamic monopoly sets of G and its vertex covers. In the rest
of this section, we intend to clarify this issue.

Lemma 2.5. Consider the repetitive polling game on a simple graph G = (V,E) where V = {v1, . . . , vn}. For an
arbitrary initial coloring X0 = (x0(v1), . . . , x

0(vn)), if V \ S ⊆ S1, then S is a dynamic monopoly or there exists
t ∈ N such that Xt is a 2−periodic coloring.
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Proof. Let X0 = (x0(v1), . . . , x
0(vn)) be an arbitrary initial coloring in which V \ S ⊆ S1. We claim that

∀r ∈ N ; V \ Sr ⊆ Sr+1 (6)

We prove the claim by induction on r. Let r = 1 and choose an arbitrary element v of V \ S1. So x1(v) = Black
and x0(v) = White. This means that

|(V \ S) ∩NG(v)| = |{w ∈ NG(v) ; x0(w) = Black}| > ⌈degG(v)
2

⌉.

So,

|S1 ∩NG(v)| = |{w ∈ NG(v) ; x1(w) = White}| > ⌈degG(v)
2

⌉.

This shows that x2(v) = White and so v ∈ S2 and the assertion is proved for r = 1. Now let r > 0 and by induction
hypothesis assume that V \ Sr ⊆ Sr+1. Choose an arbitrary element v of V \ Sr+1. So xr+1(v) = Black and
xr(v) = White. This means that

|(V \ Sr) ∩NG(v)| = |{w ∈ NG(v) ; xr(w) = Black}| > ⌈degG(v)
2

⌉.

So,

|Sr+1 ∩NG(v)| = |{w ∈ NG(v) ; xr+1(w) = White}| > ⌈degG(v)
2

⌉.

This shows that xr+2(v) = White and so v ∈ Sr+2 and the claim is proved.
Now suppose that S is not a dynamic monopoly. So, for each positive integer r, we must have Sr ⊊ V . On the

other hand, by [11, Theorem 2.1] (see also [10]), there exists t ∈ N such that Xt is a fixed coloring or a 2−periodic
coloring. If Xt is a fixed coloring, then St = St+1. So, by Equation (6), ∅ ≠ V \St+1 ⊆ St+1 which is a contradiction.
This proves that Xt is a 2−periodic coloring. □

Now we are ready to present the relation between dynamic monopoly sets of G and its vertex covers.

Theorem 2.6. Let S be an arbitrary vertex cover of a connected graph G = (V,E) on the vertex set V =
{v1, . . . , vn} and X0 = (x0(v1), . . . , x

0(vn)) be the initial coloring in which x0(v) = White if and only if v ∈ S.
Then S is a dynamic monopoly or there exists t ∈ N such that Xt is a 2−periodic coloring.

Proof. Since S is a vertex cover of G, for each v ∈ V \ S, NG(v) ⊆ S and so v ∈ S1. Now the result follows by
Lemma 2.5. □

A set T of vertices in a graph G = (V,E) is an independent set if no pair of vertices of T is adjacent. The
independence number of G, denoted by α(G), is the maximum cardinality of an independent set in G and the
covering number of G, denoted by β(G), is the minimum of the cardinalities of all vertex covers of G. It is
well known that a minimal vertex cover corresponds to the complement of a maximal independent set and so,
α(G) + β(G) = |V |.

Corollary 2.7. Consider the repetitive polling game on a simple connected graph G = (V,E).

(1) If the repetitive polling game on G is a fixed coloring game, then VC(G) ⊆ DM(G) and so dyn(G) ≤ β(G).

(2) If G doesn’t have a cycle of even length, then dyn(G) ≤ β(G).

Proof. (1) Since the game is a fixed coloring game, by theorem 2.6, any vertex cover of G is a dynamic monopoly.
So the conclusion follows.

(2) Since G doesn’t have any cycle of even length, by Theorem 2.1, the game is a fixed coloring game. So, the result
follows by statement (1). □

Corollary 2.8. Consider a repetitive polling game on a simple tree T = (V,E) with |V | > 2.

(1) dyn(T ) ≤ ⌊ |V (T )|
2 ⌋.

(2) dyn(T ) ≤ |V | − |{v ∈ V ; deg(v) = 1}|.

Proof. (1) Since T is acyclic, by Theorem 2.1, the game on it is a fixed coloring game. On the other hand T is a
bipartite graph and so its vertex set V can be partitioned into disjoint subsets S and S′ such that |S| ≤ |S′|
and each edge has an end point in S and an end point in S′. This shows that S is a vertex cover of T which

has at most ⌊ |V (T )|
2 ⌋ elements. Now by Corollary 2.7, we have dyn(G) ≤ β(G) ≤ ⌊ |V (T )|

2 ⌋.
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(2) Note that {v ∈ V ; deg(v) = 1} is an independent set of T and so its complement is a vertex cover of T . Thus,
dyn(T ) ≤ β(T ) ≤ |V | − |{v ∈ V ; deg(v) = 1}|. □

The following example shows that the bound dyn(G) ≤ β(G) in Corollary 2.7 can be strict.

Example 2.1. Let T = (V,E) where V = {v1, v2, . . . , v8} and

E = {{v1, v3}, {v2, v3}, {v3, v4}, {v4, v5}, {v4, v6}, {v6, v7}, {v6, v8}}.

Then one can check that S = {v3, v6} is a dynamic monopoly of T of minimum cardinality and S ∪{v4} is a vertex
cover of minimum cardinality. So, dyn(T ) < β(T ) (see Figure 2).

v1

v2

v3 v4

v5

v6

v7

v8

Figure 2: The graph of Example 2.1

Example 2.2. Let G = (V,E) where V = {v1, v2, . . . , v12} and E = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6},
{v6, v1}, {v6, v7}, {v7, v8}, {v8, v9}, {v9, v10}, {v10, v11}, {v11, v12}, {v12, v7}}. One can see that S = {v2, v4, v6, v7, v9, v11}
and T = {v2, v4, v6, v8, v10, v12} are two vertex covers of minimum size for G. The initial coloring corresponding to
T is a 2−periodic coloring while S is a dynamic monopoly of minimum size (dyn(G) = β(G), see Figure 3).

v1
v2

v3

v4 v5

v6

v7

v8 v9

v10

v11v12

Figure 3: The graph of Example 2.2

In the following, we give another application of Lemma 2.5.

Corollary 2.9. Consider the repetitive polling game on a simple graph G = (V,E). Let S ⊆ V be such that

|NG(v) ∩ S|> ⌊degG(v)
2 ⌋ for each v ∈ V \ S. If the repetitive polling game on G is a fixed coloring game, then S is

a dynamic monopoly.

Proof. Let X0 be an initial coloring in which x0(v) = White if and only if v ∈ S. Then one can easily see that
V \ S ⊆ S1. So the conclusion follows by Lemma 2.5. □

3. Dynamic monopolies in link of graphs

Consider the repetitive polling game on a simple graph G = (V,E), where G is the link of G1 = (V1, E1) and
G2 = (V2, E2) with a single edge {x, y} where x ∈ V (G1) and y ∈ V (G2). Note that in the general case, both the
inequalities dyn(G) < dyn(G1)+dyn(G2) and dyn(G) > dyn(G1)+dyn(G2) may occur (see Examples 3.1 and 3.3).
Moreover, if Si is a dynamic monopoly of Gi for i = 1, 2, then S1 ∪ S2 is not necessarily a dynamic monopoly for
G (See Example 3.2).

Example 3.1. Let G be a link of two copies of C4. Then one can check that dyn(G) = 4 while dyn(C4) = 3 (see
Figure 4).
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Figure 4: The link of two copies of C4 for Example 3.1

v1 v2

v3 v4

Figure 5: The link of two paths of Example 3.2

Example 3.2. Consider the graph P4 on the vertex set {v1, v2, v3, v4} as a link of two copies of P2 on the vertex
sets {v1, v2} and {v3, v4} respectively. Then S1 = {v1} and S2 = {v4} are dynamic monopolies of these two copies
of P2 while S1 ∪ S2 is not a dynamic monopoly for P4 (see Figure 5).

Example 3.3. Let G be the link of K3,1 and K4,1 with a single edge that connects two vertices of degree 1.
Let v be the internal vertex of K3,1 and w be the internal vertex of K4,1. Then S1 = {v} and S2 = {w}
are dynamic monopolies of K3,1 and K4,1 respectively but {v, w} is not a dynamic monopoly of G and we have
dyn(G) = 3 > dyn(K3,1) + dyn(K4,1) (see Figure 6).

v w

Figure 6: The link of K3,1 and K4,1 of Example 3.3

Theorem 3.1. Let G be a link of an arbitrary graph G1 and an isolated vertex y. Then dyn(G) ≤ dyn(G1) + 1.

Proof. Suppose that S is a dynamic monopoly of minimum size for G1. One can easily see that S ∪ {y} is a
dynamic monopoly of G. □

The following example shows that the bound in Theorem 3.1 is sharp.

Example 3.4. Let G be the link of K3,1 and an isolated vertex y with a single edge that connects a vertex of
degree 1 to y. Then dyn(G1) = 1 and dyn(G) = 2. ( see Figure 7)

y

Figure 7: The link of K3,1 and an isolated vertex of Example 3.4

Theorem 3.2. Let G = (V,E) be a link of G1 = (V1, E1) and G2 = (V2, E2) with a single edge {x, y} where x ∈ V1,
y ∈ V2, and degG1

(x) and degG2
(y) are even numbers. Suppose that S1 and S2 are dynamic monopolies of G1 and

G2, respectively. Then S1 ∪ S2 is a dynamic monopoly of G. In particular,

dyn(G) ≤ dyn(G1) + dyn(G2)

.
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Proof. Let X0 be the initial coloring of G1 which x0(v) =White if and only if v ∈ S1 and Y 0 be the initial
coloring of G2 which y0(w) =White if and only if w ∈ S2. Keeping in mind that

S1
t = {v ∈ V1; v is colored White at round t when the game is played on G1}

and
S2
t = {w ∈ V2; w is colored White at round t when the game is played on G2},

by the fact that S1 and S2 are dynamic monopoly, there exists r > 0 such that S1
r = V1 and S2

r = V2.
Now let S = S1 ∪ S2 and Z0 be the initial coloring of G which z0(v) =White if and only if v ∈ S. Recall that

for each t ∈ N

St = {v ∈ V ; v is colored White at round t when the game is played on G}.

We claim that Sr = V and so S is a dynamic monopoly for G. To prove the claim, by induction on t, we show that
for each positive integer t, S1

t ∪ S2
t ⊆ St.

First, let t = 1 and v ∈ S1
1 . This means that |NG1

(v) ∩ S1| ≥ ⌈degG1
(v)+1

2 ⌉.
If v ̸= x, then NG(v) = NG1(v). So by S1 ⊂ S, |NG(v) ∩ S| ≥ ⌈degG(v)+1

2 ⌉ and we conclude that v ∈ S1.

If v = x, then NG(v) = NG1(v)∪ {y}. Since degG1
(v) is even, ⌈degG(v)+1

2 ⌉ = ⌈degG1
(v)+1

2 ⌉. So, again by S1 ⊂ S,

|NG(v) ∩ S| ≥ ⌈degG(v)+1
2 ⌉ and v ∈ S1.

By the same argument, we can show that if w ∈ S2
1 , then w ∈ S1. So the assertion is proved for t = 1.

Now suppose that t > 1 and by induction hypothesis S1
t−1 ∪ S2

t−1 ⊆ St−1. Let v ∈ S1
t . Since

NG1
(v) ∩ S1

t−1 ⊆ NG(v) ∩ St−1 and ⌈degG(v) + 1

2
⌉ = ⌈

degG1
(v) + 1

2
⌉,

we conclude that v ∈ St. By the same method, we can show that S2
t ⊂ St. So the conclusion follows. □

By a similar argument as used in the proof of Theorem 3.2, the next result can be proved.

Theorem 3.3. Let G = (V,E) be a link of G1 = (V1, E1) and G2 = (V2, E2) with a single edge {x, y} where
degG1

(x) ≤ 2 and degG2
(y) ≤ 2. Suppose that S1 and S2 are dynamic monopolies of G1 and G2, respectively. Then

S1 ∪ S2 ∪ {x, y} is a dynamic monopoly of G. In particular, dyn(G) ≤ dyn(G1) + dyn(G2) + 2.

In the rest of this section, we compute dyn(G) when G is a link of some special graphs.

3.1. Dynamic monopoly for the link of cycle graphs

Consider the cycle Cn = (V,E) where

V = {v1, v2, . . . , vn} and E = {{vi, vi+1}; 1 ≤ i ≤ n− 1} ∪ {{v1, vn}}.

Let Cn,1 be the link of Cn and an isolated vertex vn+1 with the single edge {vn, vn+1}. In the following, we compute
dyn(Cn,1).

Theorem 3.4. dyn(Cn,1) = ⌈n
2 ⌉.

Proof. In order to compute dyn(Cn,1), we find a dynamic monopoly of the minimum size.

Case 1. n is a natural odd number.
In this case, by Theorem 2.1, the repetitive polling game on Cn,1 is a fixed coloring game. Let S = {vi; 1 ≤
i ≤ n and i is an odd number}. Then S is a vertex cover of Cn,1 and by Theorem 2.6, it is a dynamic
monopoly for Cn,1.

Now we show dyn(G) = |S|. Suppose that T is a dynamic monopoly of the minimum size for Cn,1 such
that |T | < |S|. So, there exist two adjacent vertices v, w ∈ V (Cn,1) \ T . By Lemma 2.2, the only possible
cases for v, w are {v, w} ∈ {{vn−1, vn}, {v1, vn}, {vn, vn+1}}. Suppose that vn, vn−1 ∈ V (Cn,1) \ T . Then
by Lemma 2.2, vn−2 ∈ T and by a similar argument as the proof of Lemma 2.2, {v1, vn+1} ⊆ T . Now since
for each 1 ≤ i ≤ n − 2 we have |{vi, vi+1} ∩ T | ≥ 1 we conclude that |T | ≥ ⌈n

2 ⌉ which is a contradiction.
The cases {v, w} = {v1, vn} or {v, w} = {vn, vn+1} can be discussed similarly.
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Case 2. n is a natural even number.
First, we show that the repetitive polling game on Cn,1 is a fixed coloring game. Suppose that X0 =
(x0(v1), . . . , x

0(vn), x
0(vn+1)) is a 2−periodic coloring. Then by Theorem 2.1, x0(vn) = x2(vn) ̸= x1(vn).

So, x1(vn+1) = White or x2(vn+1) = White. Since degCn,1
(vn+1) = 1, for each positive integer t ≥ 2 we

have xt(vn+1) = White which ensures that for each positive integer t ≥ 2 we have xt(vn) = White. This
is a contradiction and so Cn,1 doesn’t have a 2−periodic coloring.

Let S = {vi ; 1 ≤ i ≤ n and i is an even number}. The same argument as the case 1 shows that S is a
dynamic monopoly of the minimum size for Cn,1. □

Consider the cycles Cn = (V1, E1) and Cm = (V2, E2) where

V1 = {v1, v2, . . . , vn}, E1 = {{vi, vi+1}; 1 ≤ i ≤ n− 1} ∪ {{v1, vn}}

and
V2 = {vn+1, vn+2, . . . , vn+m}, E2 = {{vi, vi+1};n+ 1 ≤ i ≤ n+m− 1} ∪ {{vn+1, vn+m}}.

Let Cn,m be the link of Cn and Cm with the single edge {vn, vn+1}. In the following, we compute dyn(Cn,m).

Theorem 3.5. dyn(Cn,m) =

{
⌈n
2 ⌉+ ⌈m

2 ⌉, n+m is an even;

⌊n
2 ⌋+ ⌊m

2 ⌋+ 1, otherwise.

Proof. We follow the proof in three cases.

Case 1. Both n and m are odd.

In this case, by Theorem 2.1, the repetitive polling game on Cn,m is a fixed coloring game. Let S =
{vn+1} ∪ {vi ; 1 ≤ i ≤ n + m and i is an odd number}. Then S is a vertex cover of Cn,m and by
Theorem 2.6, it is a dynamic monopoly for it.

Now suppose that T is a dynamic monopoly of the minimum size for Cn,m such that |T | < |S| and
X0 = (x0(v1), . . . , x

0(vn+m)) be an initial coloring in which x0(vi) = White if and only if vi ∈ T . Therefore,
there exist two adjacent vertices v, w ∈ V (Cn,m) of degree 2 such that x0(v) = x0(w) = Black or x1(v) =
x1(w) = Black. So by Lemma 2.2, we get a contradiction. Hence, dyn(Cn,m) = |S| = ⌈n

2 ⌉+ ⌈m
2 ⌉.

Case 2. Both n and m are even.

Let S = {vi ; 1 ≤ i ≤ n and i is an even number}
⋃
{vi ; n + 1 ≤ i ≤ n + m and i is an odd number}.

We claim S is a dynamic monopoly of minimum size for Cn,m. Suppose X0 = (x0(v1), . . . , x
0(vn+1)) be

an initial coloring in which x0(vi) = White if and only if vi ∈ S. it is clear that for each t ∈ N we have
xt(vn) = xt(vn+1) = White. So by Theorem 2.1, there exists t ∈ N such that Xt is a fixed coloring. Now
by the fact that S is a vertex cover of Cn,m and using Theorem 2.6, we conclude that S is a dynamic
monopoly of Cn,m.

Now suppose that T is a dynamic monopoly of the minimum size for Cn,m such that |T | < |S|. By the
same argument as the case 1, we get a contradiction. So, dyn(Cn,m) = |S| = ⌈n

2 ⌉+ ⌈m
2 ⌉.

Case 3. One of n and m is even and the other is odd.

Suppose n is odd and m is even. Let S = {vi; 1 ≤ i ≤ n +m and i is an odd number}. We claim S is a
dynamic monopoly of minimum size for Cn,m. Suppose X0 = (x0(v1), . . . , x

0(vn+1)) be an initial coloring in
which x0(vi) = White if and only if vi ∈ S. It is easy to see that for each t ∈ N we have xt(vn+1) = White.
So by Theorem 2.1, there exists t ∈ N such that Xt is a fixed coloring. Now, as the case 2, by the fact that
S is a vertex cover of Cn,m and theorem 2.6, we conclude that S is a dynamic monopoly of Cn,m.

Now suppose that T is a dynamic monopoly of the minimum size for Cn,m such that |T | < |S|. By the
same argument as the case 1, we get a contradiction. So dyn(Cn,m) = |S| = ⌊n

2 ⌋+ ⌊m
2 ⌋+ 1. □
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3.2. Dynamic monopoly for the link of path graphs

Consider the path Pn = (V,E) where V = {v1, v2, . . . , vn} and E = {{vi, vi+1}; 1 ≤ i ≤ n − 1}. Let P i
n,1 be the

link of Pn and an isolated vertex vn+1 with the single edge {vi, vn+1} for vi ∈ V . In the following, we compute
dyn(P i

n,1).

Lemma 3.6. dyn(P i
n,1) =

{
⌈n
2 ⌉ n is an odd number and i ∈ {1, n}.

⌊n
2 ⌋ otherwise.

Proof. Note that by Theorem 2.1, the repetitive polling game on P i
n,1 is a fixed coloring game. We follow the

proof in two cases.

Case 1. n is an odd number and i ∈ {1, n}.
In this case, it is enough to apply Corollary 2.4.

Case 2. n is an even number or 1 < i < n.

In case i = 1, we suppose that

S = {vi; 1 ≤ i ≤ n and i is an odd number}.

Otherwise, let
S = {vi; 1 ≤ i ≤ n and i is an even number}.

In both conditions, we claim S is a dynamic monopoly of minimum size for P i
n,1. Suppose X0 =

(x0(v1), . . . , x
0(vn+1)) be an initial coloring in which x0(vi) = White if and only if vi ∈ S. It is easy

to see that S is a vertex cover of P i
n,1. So, by theorem 2.6, we conclude that S is a dynamic monopoly of

P i
n,1 which ensures that S is a dynamic monopoly.

Now suppose that T is a dynamic monopoly of the minimum size for P i
n,1 such that |T | < |S| and X0 =

(x0(v1), . . . , x
0(vn+1)) be an initial coloring in which x0(vi) = White if and only if vi ∈ T . Therefore, there

exist two adjacent vertices v, w ∈ V (P i
n,1) of degree at least 2 such that xt(v) = xt(w) = Black for each

t ≥ 2 which is a contradiction. □

Consider the paths Pn = (V1, E1) and Pm = (V2, E2) where

V1 = {v1, v2, . . . , vn}, E1 = {{vi, vi+1}; 1 ≤ i ≤ n− 1},

and
V2 = {vn+1, vn+2, . . . , vn+m}, E2 = {{vi, vi+1};n+ 1 ≤ i ≤ n+m− 1}.

Let Pn,m be the link of Pn and Pm with the single edge {vn, vn+1}. In the following, we compute dyn(Pn,m).

Lemma 3.7. dyn(Pn,m) = ⌊n+m
2 ⌋.

Proof. By Corollary 2.4, the conclusion follows. □

Consider the paths Pn = (V1, E1) and Pm = (V2, E2), n ≥ 3, m ≥ 2, where

V1 = {v1, v2, . . . , vn}, E1 = {{vi, vi+1}; 1 ≤ i ≤ n− 1}

and
V2 = {vn+1, vn+2, . . . , vn+m}, E2 = {{vi, vi+1};n+ 1 ≤ i ≤ n+m− 1}.

Let Pi,n,m be the link of Pn and Pm with the single edge {vi, vn+1} such that 1 ≤ i ≤ n. In the following, we
compute dyn(Pi,n,m).

Lemma 3.8. dyn(Pi,n,m) =


⌊n+m

2 ⌋ i ∈ {1, n}
⌊n+m−1

2 ⌋ i ∈ {2, n− 1}
⌊n
2 ⌋+ ⌊m

2 ⌋ 3 ≤ i ≤ n− 2 and (i is even or m = 2)

⌈n
2 ⌉+ ⌊m

2 ⌋ Otherwise.
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Proof. Note that by Theorem 2.1, the repetitive polling game on Pi,n,m is a fixed coloring game. We follow the
proof in three cases.

Case 1. i ∈ {1, n}.
In this case, Pi,n,m = Pn,m. So, By Lemma 3.7, the result is obvious.

Case 2. i ∈ {2, n− 1}.
In this case Pi,n,m = P i

n+m−1,1. So, by Lemma 3.6, the conclusion follows.

Case 3. 3 ≤ i ≤ n− 2 and (i is even or m = 2).

Let S = {vj ; 1 ≤ j ≤ n and j is an even number}
⋃
{vj ; n+ 2 ≤ j ≤ n+m and j ≡ n+ 2 mod 2}. One

can see that S is a vertex cover of Pi,n,m, so by Theorem 2.6, S is a vertex cover of Pi,n,m which ensures
that S is a dynamic monopoly. By the same argument as Lemma 3.6, one can see that S is a dynamic
monopoly of the minimum size for Pi,n,m. Thus, dyn(Pi,n,m) = ⌊n

2 ⌋+ ⌊m
2 ⌋.

Case 4. 3 ≤ i ≤ n− 2 and (i is odd and m > 2).

Let S = {vj ; 1 ≤ j ≤ n and j is an odd number}
⋃
{vj ; n + 2 ≤ j ≤ n +m and j ≡ n+ 2 mod 2}. One

can see that S is a vertex cover of Pi,n,m, so by Theorem 2.6, S is a dynamic monopoly. By the same
argument as Lemma 3.6, one can see that S is a dynamic monopoly of the minimum size for Pi,n,m. Thus,
dyn(Pi,n,m) = ⌈n

2 ⌉+ ⌊m
2 ⌋. □

Consider the paths Pn = (V1, E1) and Pm = (V2, E2), n,m ≥ 3, where

V1 = {v1, v2, . . . , vn}, E1 = {{vi, vi+1}; 1 ≤ i ≤ n− 1},

and
V2 = {vn+1, vn+2, . . . , vn+m}, E2 = {{vi, vi+1};n+ 1 ≤ i ≤ n+m− 1}.

Let Pi,j,n,m be the link of Pn and Pm with the single edge {vi, vj} such that 1 ≤ i ≤ n and n+ 1 ≤ j ≤ n+m. In
the following, we compute dyn(pi,j,n,m).

Theorem 3.9. dyn(Pi,j,n,m) =


dyn(Pi,n,m), i=1,2,n-1,n and j=n+1,n+m.

dyn(Pj,m,n), i=1,n and j=n+1,n+2,n+m-1,n+m.

⌊n
2 ⌋+ ⌊m

2 ⌋, otherwise.

Proof. According to Lemma 3.8, it is enough to examine the third case. Choose

S = {vi; 1 ≤ i ≤ n and i ≡ 2 mod 2}
⋃

{vi; n+ 1 ≤ i ≤ n+m and i ≡ n+ 1 mod 2}.

Similar to the proofs of the previous Lemmas, the conclusion follows. □
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