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ABSTRACT: In this article, the structure of the Clifford-Weyl superalgebras and
their associated Lie superalgebras will be investigated. These superalgebras have a
natural supersymmetric inner product which is invariant under their Lie superalge-
bra structures. The Clifford-Weyl superalgebras can be realized as tensor product
of the algebra of alternating and symmetric tensors respectively, on the even and
odd parts of their underlying superspace. For Physical applications in elementary
particles, we add star structures to these algebras and investigate the basic rela-
tions. Ortho-symplectic Lie algebras are naturally present in these algebras and
their representations on these algebras can be described easily.
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1. Introduction

In this article, everything starts from a supersymmetric bilinear form on a super vector space. These spaces have
an associated super algebra, called their Clifford-Weyl algebra that is realized as the space of tensor product of the
algebra of alternating and symmetric tensors on the underlying space. Therefore, we will first give an overview of
the basic concepts of the structure of the alternating and symmetric tensor algebras, then after fixing the notations,
we will investigate the structure of the Clifford-Weyle algebras.

First, we will find the basic properties of the structure of Clifford’s and Weyl’s algebras separately, and then we
will extend the obtained results in a unified algebra on superspaces. These algebras have a natural inner product
that is compatible with their algebras and Lie algebras structures.
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1.1. Symmetric and alternating inner products

All vector spaces discussed in this article are real or complex vector spaces of finite dimension. On a vector space
V , a bilinear function (x, y) 7→ ⟨x, y⟩ (with values in the field of scalars) is called a symmetric inner product on V ,
whenever ⟨x, y⟩ = ⟨y, x⟩ and is called an alternating inner product, whenever ⟨x, y⟩ = −⟨y, x⟩. A symmetric or an
alternating inner product is called non-degenerate if, for every nonzero vector x, there exists a vector y such that
⟨x, y⟩ ≠ 0.

1.2. Super spaces

In a superspace V = V0 ⊕ V1, the subspace V0 is called the even part, and the subspace V1 is called the odd part
of V [1, 9]. Elements of V0 are called even vectors, and elements of V1 are called odd vectors and they are called
homogeneous vectors of the superspace. We denote the parity of each homogeneous vector x by ε(x).

ε(x) =

{
0 x is even ,

1 x is odd
.

For simplicity in calculations, the value of (−1)ε(x) is shown by (−1)x, and in this notation, the meaning of x is the
same as ε(x). Whenever the symbol ε(x) is used, it is assumed that x is homogeneous. If the superspace V has an
algebra structure, we call it a super algebra whenever ε(xy) = ε(x) + ε(y). (Addition is done in Z2 )

A bilinear function on the super space V is called super symmetric if the even and odd parts are perpendicular
to each other and for homogeneous vectors we have:

⟨x, y⟩ = (−1)xy⟨y, x⟩.

This condition shows that this operation on V0 is a symmetric inner product and on V1 is an alternating inner
product. The non-degeneracy of this multiplication is equivalent to the non-degeneracy on V0 and V1.

1.3. Algebra of alternating tensors

Let V be a vector space. the space of alternating tensors (contravariant) of order k on V is denoted by ∧kV , whose
simple elements are x1 ∧ · · · ∧ xk. The direct sum of these spaces forms a graded associative super commutative
algebra by external product [4] ∧

V =

n⊕
k=0

∧kV, n = dim(V ).

Considering a non-degenerate symmetric inner product on V , naturally, a nondegenerate symmetric inner product
on ∧kV (k = 0, . . . , n) is created as follows.

⟨x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk⟩ =
∑
σ

εσ⟨x1, yσ(1)⟩ . . . ⟨xk, yσ(k)⟩

= det (⟨xi, yj⟩) .

This definition is well-defined and can be extended to the whole of
∧

V by considering the spaces ∧kV to be
perpendicular to each other. Elements of

∧
V are called multivectors and we denote them by x,y, z, . . . .

Some important involutions on
∧
V are defined as follows [4]

(x1 ∧ · · · ∧ xk)
′
= (−1)kx1 ∧ · · · ∧ xk,

(x1 ∧ · · · ∧ xk)
opp

= xk ∧ · · · ∧ x1 = (−1)
k(k−1)

2 x1 ∧ · · · ∧ xk,

x1 ∧ · · · ∧ xk = (x1 ∧ · · · ∧ xk)
′ opp

= (−1)
k(k+1)

2 x1 ∧ · · · ∧ xk.

The following relations hold for these involutions

(x ∧ y)′ = x′ ∧ y′, (x ∧ y)opp = yopp ∧ xopp, x ∧ y = y ∧ x.

The insertion of a vector v in the members of
∧
V is an operator that is defined as follows

iv (x1 ∧ · · · ∧ xk) =

k∑
j=1

(−1)j+1⟨v, xj⟩x1 ∧ · · · ∧ x̂J ∧ · · · ∧ xk. (1)
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This operator is a derivation of degree -1 on
∧

V . This operator has the following relations to the above involutions

(ivx)
′
= −ivx

′, (ivx)
opp

= −ivx̄, lvx = ivx
opp.

An important relation between the insertion operator and the symmetric inner product on
∧
V is as follows [4]

⟨ivx, y⟩ = ⟨x, v ∧ y⟩. (2)

The insertion operator is generalized for multivectors x = x1 ∧ · · · ∧ xk and y by the following definition

ixy = ixk
◦ · · · ◦ ix1

(y).

This definition is well-defined and if the order of x is strictly greater than the order of y, then the value of the
insertion will be zero. In general, the relationship between this operation and the symmetric inner product on

∧
V

is as follows

⟨ixy, z⟩ = ⟨y, x ∧ z⟩. (3)

The above relation shows that if x and y are of the same order, then:

ixy = ⟨x, y⟩.

1.4. Algebra of symmetric tensors

The space of symmetric (contravariant) tensors of order k on a vector space W is denoted by ∨kW , and its simple
elements are ξ1 ∨ · · · ∨ ξk [4]. The direct sum of these spaces is denoted by

∨
W which is a commutative graded

associative algebra by its symmetric product ∨
W =

∞⊕
k=0

∨kW.

An important involution on
∨
W is the parity operator which is defined as follows

(ξ1 ∨ · · · ∨ ξk)
′
= (−1)kξ1 ∨ · · · ∨ ξk.

We consider a non-degenerate alternating inner product ω on W . So W must be even dimensional. By ω, we can
construct a non-degenerate inner product on ∨kW as follows

⟨ξ1 ∨ · · · ∨ ξk, η1 ∨ · · · ∨ ηk⟩ =
∑
σ∈Sk

ω
(
ξ1, ησ(1)

)
. . . ω

(
ξk, ησ(k)

)
.

By considering the subspaces ∨kW to be orthogonal to each other, we can extend these inner products on the whole∨
W . This inner product for even k, is symmetric, and for odd k, is alternating. Therefore, for the superspace

structure of
∨
W , this inner product is a supersymmetric inner product on this superalgebra.

Arbitrary elements of
∨
W will be denoted by ξ,η,ϕ, . . ., and are called symmetric multivectors. The insertion

of a vector η in the members of
∨
W is defined as follows

iη (ξ1 ∨ · · · ∨ ξk) =

k∑
j=1

ω (η, ξj) ξ1 ∨ · · · ∨ ξ̂J ∨ · · · ∨ ξk.

This operation is also a derivation of degree -1 on the algebra
∨

W The important relation between this operator
and the supersymmetric inner product on

∨
W is as follows

⟨iηξ, ϕ⟩ = −⟨ξ, η ∨ ϕ⟩. (4)

Note that in the above, one of the inner products, is symmetric and the other is alternating. This insertion operator
is extended for η = η1 ∨ · · · ∨ ηk and ξ as follws

iηξ = iη1
◦ · · · ◦ iηk

(ξ).

If the order of η is strictly greater than the order of ξ, then the value of the insertion is zero. In general, the
relationship between this operation and the supersymmetric inner product is as follows.

⟨iηξ , ϕ⟩ = (−1)η⟨ξ, η ∨ ϕ⟩.

The above relation shows that if the orders of η and ξ are the same , then:

iηξ = (−1)η⟨ξ, η⟩ = ⟨η, ξ⟩.
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2. Structure of Clifford Algebra of a symmetric inner product

In this section, V is a vector space and ⟨, ⟩ is a non-degenerate symmetric inner product on V . For an associative
unital algebra A, a linear map φ : V → A is called a Clifford map whenever:

φ(x)φ(y) + φ(y)φ(x) = 2⟨x, y⟩1.

There exists a unique associative unital algebra (up to isomorphism) [4, 8], denoted by CL(V ), such that V is a
subspace of CL(V ) and generates it, and

∀x, y ∈ V xy + yx = 2⟨x, y⟩1.

and for every unital associative algebra A, every Clifford map φ : V → A is extended uniquely to an algebra
homomorphism φ̃ : CL(V ) → A. The algebra CL(V ) is called the Clifford algebra of (V, ⟨, ⟩).

So, for any two orthogonal vectors x, y we have xy = −yx. The algebra CL(V ) as a vector space, is naturally
isomorphic to

∧
V and the following map is the natural isomorphism between these spaces

x1 ∧ · · · ∧ xk 7→ 1

k!

∑
σ∈Sk

εσxσ(1) . . . xσ(k).

This definition is well defined and if x1, . . . , xk are prepenicular to each other then x1 ∧ · · · ∧ xk is mapped to
x1 . . . xk. Therefore, for an orthogonal basis {e1, . . . , en} the basis that is created on

∧
V is mapped to the basis

that is created on CL(V ) so, the above map is an isomorphism. With this isomorphism, we can consider the exterior
multiplication on

∧
V as an operation on CL(V ). So, for two vectors x, y ∈ V we have:

x ∧ y =
1

2
(xy − yx) = xy − ⟨x, y⟩1 ⇒ xy = x ∧ y + ⟨x, y⟩1.

Three involutions on
∧
V that have been described above, can also be considered as involutions on CL(V ). and

the following relations hold

(xy)′ = x′y′, (xy)opp = yoppxopp, xy = y x.

Clifford product between vectors in V and multivectors in CL(V ) satisfy the following relations

x (y1 ∧ · · · ∧ yk) = x ∧ y1 ∧ · · · ∧ yk + ix (y1 ∧ · · · ∧ yk) , (5)

(y1 ∧ · · · ∧ yk)x = y1 ∧ · · · ∧ yk ∧ x− (−1)kix (y1 ∧ · · · ∧ yk) . (6)

Due to the linearity of both sides of equalities for individual vectors, it is enough to check the correctness of equality
for the vectors of an orthogonal base.

The involution x 7→ x′, makes CL(V ) (or
∧
V ) into a superalgebra. A multivector x is even whenever x′ = x

and is odd whenever x′ = −x. We can consider Lie algebra structure and Lie superalgebra structure [6] on CL(V )
by the following Lie brackets

(Lie bracket) [x,y] = xy − yx,
(super Lie bracket) [x,y]s = xy − (−1)xyyx.

Note that if x or y is even. then the Lie bracket and super Lie bracket of x and y are the same.
The Super Lie bracket operation between a vector and a multivector is the same as two times the insertion of

the vector into the multivector. In fact:

[v,y]s = 2ivy.

To prove this equality, it is sufficient to use equalities (5) and (6).
To find the general formula for the Clifford multiplication of multivector, it is necessary to generalize the

insertion operator such that it also includes the exterior multiplication. For every natural number 1 ≤ k and a
natural number 1 ≤ l ≤ k and a multivector y, we put

i
(l)
x1∧···∧xk

y =
∑

σ∈Sl,k−l

εσxσ(l+1) ∧ · · · ∧ xσ(k) ∧ ixσ(l)∧···∧xσ(1)
(y).
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This definition is well defined. In the above:

Sl,k−l = {σ ∈ Sk | σ(1) < · · · < σ(l), σ(l + 1) < · · · < σ(k)} .

For using in the next section also define S∗
l,k−l as follows:

S∗
l,k−l = {σ ∈ Sk | σ(l + 1) < · · · < σ(k)} .

In the case l = 0 it is natural to define i
(0)
x y = x ∧ y. If the order of x or y is strictly less than l, then i

(l)
x y = 0.

If y is of order m, this formula shows that the order of i
(l)
x y is equal to k +m − 2l. It is clear that in the case of

l = k, we have i
(k)
x = ixopp Therefore, for two elements of the same order k such as x,y we also have:

i(k)x y = ixopp y = ⟨xopp, y⟩ = (−1)
k(k−1)

2 ⟨x, y⟩.

Theorem 2.1. The following relations hold for all multivectors x,y, and a vector v.

i(l)x y = (−1)(x−l)(y−l)i(l)y x, (7)

i
(l)
v∧x(y) = (−1)lv ∧ i(l)x (y) + (−1)l−1i(l−1)

x ◦ iv(y), (8)

iv ◦ i(l)x (y) = (−1)li
(l)
iv(x)

(y) + (−1)xi(l)x ◦ iv(y), (9)

i(l)x (v ∧ y) = (−1)xv ∧ i(l)x (y) + (−1)l−1i
(l−1)
iv(x)

(y). (10)

Proof. Due to the linearity of both sides of these equalities for their variables, it is enough to prove them for the
members of a base. In particular, for an orthogonal base {e1, . . . , en} of V , we can use the exterior products of
vectors e1, . . . , en to construct a base for

∧
V . Let e,u,v, . . . be some multivectors in the base which is constructed

for
∧
V . It is easy to see that if the number of identical vectors in u and v is not equal to l then i

(l)
u (v) = 0. And

if oreder of e is l, then:

i
(l)
e∧ue ∧ v = (−1)

l(l−1)
2 u ∧ v.

All the above equations in the theorem can be proved with the help of this relation by checking all possible situations.
□

We also define two generalized insertion operators as follows. For a multivector x of order k define:

ix =

k∑
l=0

i(l)x , i ′
x =

k∑
l=0

(−1)li(l)x .

For example, for a vector v and a multivector y, we have:

ivy = v ∧ y + ivy = vy . i ′
v y = v ∧ y − ivy = y′v.

By adding the equalities (8), (9), (10) for all possible values of l, the following similar equalities for the generalized
insertion operators are obtained

iv∧x(y) = v ∧ i ′
x(y) + i

′
x ◦ iv(y),

i ′
v∧x(y) = v ∧ ix(y)− ix ◦ iv(y),

iv ◦ ix(y) = i ′
iv(x)(y) + (−1)xix ◦ iv(y),

iv ◦ i
′
x (y) = iiv(x)(y) + (−1)xi ′

x ◦ iv(y),

ix(v ∧ y) = (−1)xv ∧ ix(y) + i
′
iv(x)(y),

i ′
x (v ∧ y) = (−1)xv ∧ i ′

x(y)− iiv(x)(y).
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Also, by adding the equalities (7) for all possible values of l, we find:{
ixy = i ′

yx both x,y are even ,

ixy = −i ′
yx both x,y are odd

.

Also, If one of the x,y is even and the other is odd, then:

ixy = iyx, i ′
xy = i ′

yx.

Theorem 2.2. The Clifford multiplication and the generalized insertion operators are related as follows{
xy = ixy x is odd ,

xy = i ′
xy x is even

. (11)

Proof. We prove this theorem by induction on k (order of x ). For k = 1, we have already obtained this result
in (34). For arbitrary k, we separate two cases of evenness and oddness of k. First, suppose (11) holds for all x
of order 2m− 1 and we prove (11) for all x of order 2m. It is sufficient to prove (11) for multivectors in the form
v ∧ x, where v is a vector and x is a multivector of order 2m− 1.

(v ∧ x)y =
1

2
(vx− xv)y =

1

2
(vxy − xvy) =

1

2

(
v(ixy)− x (v ∧ y + ivy)

)
=

1

2

(
v ∧ ixy + iv(ixy)− (ix(v ∧ y) + ix(ivy))

)
=

1

2

(
v ∧ ixy + i ′

iv(x)(y)− ix ◦ iv(y)−
(
−v ∧ ix(y) + i

′
iv(x)(y) + ix (ivy)

))
= v ∧ ixy − ix ◦ iv(y) = i ′

v∧x(y).

Now, suppose (11) holds for all x of order 2m and we prove (11) for all x of order 2m+1. As before, we prove (11)
for multivectors in the form v ∧ x in which the order of x is 2m.

(v ∧ x)y =
1

2
(vx+ xv)y =

1

2
(vxy + xvy) =

1

2

(
v(i ′

xy) + x (v ∧ y + ivy)
)

=
1

2
(v ∧ i ′

xy + iv(i
′
xy) + i

′
x(v ∧ y) + i ′

x(ivy))

=
1

2

(
v ∧ i ′

xy + iiv(x)(y) + i
′
x ◦ iv(y) + v ∧ i ′

x(y)− iiv(x)(y) + i
′
x (ivy)

)
= v ∧ i ′

xy + i ′
x ◦ iv(y) = iv∧x(y).

So, the proof is complete. □

Corollary 2.3.

[x,y]s = (−1)x
(
i ′
x (y)− ixy

)
= (−1)

x+1
2

∞∑
k=0

i(2k+1)
x y.

To prove this equation, it can be checked for all possible cases of evenness and oddness of x and y. In the case
x = u ∧ v, we have:

[u ∧ v,y] = [u ∧ v,y]s = −2i
(1)
u∧vy = 2 (u ∧ ivy − v ∧ iuy) .

In particular, when y = y1 ∧ · · · ∧ yk we have:

[u ∧ v, y1 ∧ · · · ∧ yk] =

k∑
i=1

y1 ∧ · · · ∧ [u ∧ v, yi] ∧ · · · ∧ yk. (12)

Now, we will discuss the relations between the Clifford product and Lie bracket and the symmetric inner product
on CL(V ).
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Theorem 2.4. For a multivector x of order k and any multivectors y, z and a number 0 ≤ l ≤ k we have:

⟨i(l)x y, z⟩ = ⟨y, i(k−l)
xopp z⟩. (13)

Proof. The only important case is when the order of the multivectors fits together, in other cases both sides are
zero. Therefore, If the order of y is m, then the order of z must be equal to k +m− 2l. We prove the theorem by
induction on k.

For k = 1 and l = 1,(13) is the same as (2). By interchanging the sides of (2) we find (13) for l = 0.
Now, suppose that equality holds for all multivectors of order k. We prove the equality for all multivectors in

the form u ∧ x where x is of order k.

⟨i(l)u∧xy, z⟩ = ⟨(−1)lu ∧ i(l)x y + (−1)l−1i(l−1)
x ◦ iu(y), z⟩

= (−1)l⟨i(l)x y, iuz⟩+ (−1)l−1⟨iu(y), i(k−l+1)
xopp z⟩

= ⟨y, (−1)li
(k−l)
xopp ◦ iu(z) + (−1)l−1u ∧ i

(k−l+1)
xopp z⟩

= (−1)k⟨y, i(k+1−l)
u∧xopp z⟩ = ⟨y, i(k+1−l)

(u∧x)oppz⟩. □

By summation of the sides of (13) for all possible values of l, we obtain the following results

⟨ixy, z⟩ = ⟨y, ixoppz⟩,

⟨i ′
xy, z⟩ = ⟨y, i ′

x̄z⟩.

Corollary 2.5. For all multivectors x,y, z we have:

⟨xy, z⟩ = ⟨x, zyopp⟩ = ⟨y,xoppz⟩. (14)

This equality can be checked for all possible cases of evenness and oddness of x and y and z. Note that the only
important cases are ε(x) + ε(y) + ε(z) = 0. In other cases, both sides of (14) are zero.

Corollary 2.6. For Lie algebra structure of CL(V ), we have:

⟨[x,y], z⟩ = ⟨x, [z,yopp]⟩.

To make an inner product that is invariant under the Lie algebra structure of CL(V ), we need a slight change in
the inner product. We define a new inner product on

∧
V as follows

⟨x,y⟩new = ⟨xopp,y⟩.

This new symmetric inner product may be different from the previous one in at most a sign, and with this new
inner product, the following relations hold

⟨xy, z⟩new = ⟨x, yz⟩new = ⟨y, zx⟩new,

⟨[x,y], z⟩new = ⟨x, [y, z]⟩new.

For each multivector y, the operator ad(y) on the CL(V ) is defined by ad(y)(x) = [y,x]. If the order of y is 2 ,
then all subspaces ∧kV are invariant under the operator ad(y) and ad(y) is antisymmetric for ⟨, ⟩ and ⟨, ⟩new and
we have:

ad(y)(x) = −2i(1)y x.

So, ∧2V is closed under the Lie bracket and it is a Lie subalgebra CL(V ). In fact, all the subspaces ∧kV can be
considered as a representation space for Lie algebra ∧2V .

The mapping y 7→ ad(y)|V is a Lie algebra isomorphism from ∧2V to o(V ). Therefore, we can consider o(V )
as a Lie subalgebra of CL(V ). In particular, for each T ∈ o(V ) there is a unique element y ∈ ∧2V such that for
each v ∈ V :

T (v) = [y, v] = −2ivy.

85



N. Boroojerdian, AUT J. Math. Comput., 6(1) (2025) 79-96, DOI:10.22060/AJMC.2023.22595.1192

3. Structure of Weyl Algebra of an alternating inner product

In this section, V is a vector space and ω is a non-degenerate alternating inner product on V (So, V is even
dimensional). For an associative unital algebra A, a linear map φ : V → A is called a Weyl map whenever:

φ(ξ)φ(η)− φ(η)φ(ξ) = 2ω(ξ, η)1.

There exists a unique associative unital algebra (up to isomorphism) [10], denoted by WL(V ), such that V is a
subspace of WL(V ) and generates it, and

∀ξ, η ∈ V ξη − ηξ = 2ω(ξ, η)1.

and for every unital associative algebra A, every Weyl map φ : V → A is extended uniquely to an algebra
homomorphism φ̃ : WL(V ) → A. The algebra WL(V ) is called the Weyle algebra of (V, ω).

So, for any two orthogonal vectors ξ, η we have ξη = ηξ. The map ξ 7→ −ξ from V to WL(V ) is a Weyl map
and extends to an algebra isomorphism on WL(V ). This is an involution on WL(V ) and its eigenspaces make the
Weyl algebra into a superalgebra. The algebra WL(V ) as a vector space, is naturally isomorphic to

∨
V and the

following map is the natural isomorphism between these spaces

ξ1 ∨ · · · ∨ ξk 7→ 1

k!

∑
σ∈Sk

ξσ(1) . . . ξσ(k).

This definition is well-defined and if ξ1, . . . , ξk are in an isotropic subspace then ξ1 ∨ · · · ∨ ξk is mapped to ξ1 . . . ξk.
This isomorphism preserves the parity involutions of these two algebras and is an isomorphism of superalgebras.
With this isomorphism, we can consider

∨
V and WL(V ) identical and the symmetric multiplication on

∨
V as an

operation on WL(V ), or vice versa.
For example, for two vectors ξ, η ∈ V we have:

ξ ∨ η =
1

2
(ξη + ηξ) = ξη − ω(ξ, η)1 ⇒ ξη = ξ ∨ η + ω(ξ, η)1.

We denote the Lie bracket and the super Lie structure on WL(V ), respectively by [, ] and [, ]s.

Theorem 3.1. In the Weyl algebras, the Lie bracket operation between a vector ξ and a symmetric multi-vector η
is the same as two times the insertion of ξ into η. In fact:

[ξ,η] = 2iξη.

Proof. Assume η = η1 ∨ · · · ∨ ηk.

[ξ, η1 ∨ · · · ∨ ηk] =
1

k!

∑
σ

[
ξ, ησ(1) . . . ησ(k)

]
=

1

k!

∑
σ

[
ξ, ησ(1)

]
ησ(2) . . . ησ(k) + · · ·+ 1

k!

∑
σ

ησ(1) . . . ησ(k−1)

[
ξ, ησ(k)

]
=

1

k!

∑
σ

2ω
(
ξ, ησ(1)

)
ησ(2) . . . ησ(k) + · · ·+ 1

k!

∑
σ

2ω
(
ξ, ησ(k)

)
ησ(1) . . . ησ(k−1).

For any j = 1, . . . , k we can prove the following equality:

1

k!

∑
σ

2ω
(
ξ, ησ(j)

)
ησ(1) . . . η̂σ(j) . . . ησ(k) =

2

k

k∑
i=1

ω (ξ, ηi) η1 ∨ · · · ∨ η̂l ∨ · · · ∨ ηk (15)

=
2

k
iξ (η1 ∨ · · · ∨ ηk) .

It is sufficient to note that for any i = 1, . . . , k we have:

1

k!

∑
σ:σ(j)=i

2ω
(
ξ, ησ(j)

)
ησ(1) . . . η̂σ(j) . . . ησ(k) =

2

k
ω (ξ, ηi) η1 ∨ · · · ∨ η̂ι ∨ · · · ∨ ηk.

Now, the proof is complete. □
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Theorem 3.2. In the Weyl algebras, the multiplication of a vector v to a symmetric multivector η has the following
relation to the symmetric product and the insertion operator

ξη = ξ ∨ η + iξη. (16)

Proof. Assume η = η1 ∨ · · · ∨ ηk. We obtain

ξ ∨ η1 ∨ · · · ∨ ηk =
1

(k + 1)!

∑
σ

ξησ(1) . . . ησ(k) + · · ·+ 1

(k + 1)!

∑
σ

ησ(1) . . . ησ(i)ξησ(i+1) . . . ησ(k)

+ · · ·+ 1

(k + 1)!

∑
σ

ησ(1) . . . ησ(k)ξ. (17)

First, we find the following relation for any terms in the above expression

1

(k + 1)!

∑
σ

ησ(1) . . . ησ(i)ξησ(i+1) . . . ησ(k) =
1

(k + 1)!

∑
σ

ησ(1) . . . ησ(i−1)ξησ(i) . . . ησ(k) (18)

+
2

(k + 1)!

∑
σ

ω
(
ησ(i), ξ

)
ησ(1) . . . η̂σ(i) . . . ησ(k).

The last term, by (15) is equal to −2
k(k+1) iξ (η1 ∨ · · · ∨ ηk). Now, in (17), starting with the last term and using (18),

and iterating this process we find (16). □

Corollary 3.3.

ξ ∨ η =
1

2
(ξη + ηξ), ηξ = η ∨ ξ − iξη.

To find the general formula for the Weyl production of symmetric multivectors, it is necessary to generalize the
insertion operator. For every natural number 1 ≤ k and every natural number l = 1, . . . , k, we put:

i
(l)
ξ1∨···∨ξk

η =
∑

σ∈Sl,k−l

(
iξσ(1)∨···∨ξσ(l)

η
)
∨
(
ξσ(l+1) ∨ · · · ∨ ξσ(k)

)
.

In the case l = 0, put i
(0)
ξ η = ξ ∨ η.

Explicitly, this operation of insertion between symmetric multivectors can be written as follows:

i
(l)
ξ1∨···∨ξk

(η1 ∨ · · · ∨ ηm) (19)

=
∑

σ∈Sl,k−l

∑
τ∈S∗

l,m−l

ω
(
ξσ(1), ητ(1)

)
. . . ω

(
ξσ(l), ητ(l)

)
ξσ(l+1) ∨ · · · ∨ ξσ(k) ∨ ητ(l+1) ∨ · · · ∨ ητ(m).

If the order of one of ξ or η is strictly less than l, then i
(l)
ξ η = 0 This formula shows that the order of i

(l)
ξ η is equal

to k +m− 2l. It is clear that in the case l = k we have i
(k)
ξ = iξ. We also have: i

(l)
ξ η = (−1)li

(l)
η ξ. From (19), the

following equalities can also be easily proved:

i
(l)
ξ∨η(ϕ) = ξ ∨ i(l)η (ϕ) + i(l−1)

η ◦ iξ(ϕ), (20)

iξ ◦ i(l)η (ϕ) = i
(l)
iξ(η)

(ϕ) + i(l)η ◦ iξ(ϕ), (21)

i(l)η (ξ ∨ ϕ) = ξ ∨ i(l)η (ϕ)− i
(l−1)
iξη

(ϕ). (22)

In the context of the Weyl algebras, we also define two generalized insertion operators as follows. For a symmetric
multivector ξ of order k define:

iξ =

k∑
l=0

i
(l)
ξ , i ′

ξ =

k∑
l=0

(−1)li
(l)
ξ .

Clearly: iξ(η) = i ′
η (ξ), and for a vector ξ we have:

iξη = ξ ∨ η + iξη = ξη.
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By adding the sides of (20) and (21) and (22) for all possible values of l we find similar relations for the generalized
insertion operator.

iξ∨η(ϕ) = ξ ∨ iη(ϕ) + iη ◦ iξ(ϕ),
iξ ◦ iη(ϕ) = iiξ(η)(ϕ) + iη ◦ iξ(ϕ),

iη(ξ ∨ ϕ) = ξ ∨ iη(ϕ)− iiξη(ϕ).

Theorem 3.4. Weyl multiplication in WL(V ) in terms of the generalized insertion operator is as follows

ηϕ = iη(ϕ) = i ′
ϕη. (23)

Proof. By inductionon k (the order of η ), we can prove (23). For k = 1, (23) has already been obtained in the
theorem (3.2) Now, suppose (23) holds for all η of order k, and we prove it for all symmetric multivectors in the
form ξ ∨ η in which the order of η is k.

(ξ ∨ η)ϕ =
1

2
(ξη + ηξ)ϕ =

1

2
(ξηϕ+ ηξϕ) =

1

2

(
ξ
(
iηϕ

)
+ η (ξ ∨ ϕ+ iξϕ)

)
=

1

2

(
ξ ∨ iηϕ+ iξ

(
iηϕ

)
+ iη(ξ ∨ ϕ) + iη (iξϕ)

)
=

1

2

(
ξ ∨ iηϕ+ iiξ(η)(ϕ) + iη ◦ iξ(ϕ) + ξ ∨ iη(ϕ)− iiξ(η)(ϕ) + iη (iξϕ)

)
= ξ ∨ iη(ϕ) + iη ◦ iξ(ϕ) = iξ∨η(ϕ).

□

Corollary 3.5. The lie bracket of symmetric multivectors satisfies the following relation

[ξ,η] = iξ(η)− iη(ξ) = iξ(η)− i
′

ξ (η) = 2

∞∑
n=0

i
(2n+1)
ξ η.

For example if the order of ξ is 2 , then

[ξ,η]s = [ξ,η] = 2i
(1)
ξ (η). (24)

Now, we explore the relationships between the super inner product and the Weyl multiplication and the super Lie
bracket on WL(V ).

Theorem 3.6. For a symmetric multivector ξ of order k and a number 0 ≤ l ≤ k we have:

⟨i(l)ξ η, ϕ⟩ = (−1)l⟨η, i
(k−l)
ξ ϕ⟩. (25)

Proof. The only important case is when the order of the multivectors are proportional, in other cases, both sides
are zero. For example, if the order of η is m, then the order of ϕ must be equal to k + m − 2l. We prove the
theorem by induction on k.

For k = 1 and l = 1 this equality is the same as (4). By interchanging the two terms in the inner product in
(4), the theorem is proved for the case l = 0. Now, suppose equality holds for all multivectors of order k and we
prove the equality for multivectors in the form γ ∨ ξ where ξ is of order k

⟨i(l)γ∨ξη, ϕ⟩ = ⟨γ ∨ i
(l)
ξ η + i

(l−1)
ξ ◦ iγ(η), ϕ⟩

= ⟨i(l)ξ η, iγϕ⟩+ (−1)l−1⟨iγ(η), i
(k−l+1)
ξ ϕ⟩

= (−1)l⟨η, i
(k−l)
ξ ◦ iγ(ϕ) + γ ∨ i

(k−l+1)
ξ ϕ⟩

= (−1)l⟨η, i
(k+1−l)
γ∨ξ ϕ⟩.

□

Corollary 3.7. If the order of ξ is k, then:

⟨ξη, ϕ⟩ = (−1)k⟨η, ϕξ⟩. (26)
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it is sufficient to sum two sides of (25) for all possible values of l and use(23).

Corollary 3.8.

⟨ξη, ϕ⟩ = ⟨ξ, ηϕ⟩. (27)

Notice that to prove (27), the only important case is ε(ξ) + ε(η) + ε(ϕ) = 0, in other cases both sides are zero.
To prove (27), interchange terms in the inner products in (26) and notice that for even k, these inner products on
both sides are alternating or symmetric, and for odd k, one of them is alternating and the other is symmetric.

Corollary 3.9. The supersymmetric inner product on WL(V ) is invariant for the Lie superalgebra structure of the
WL(V ). In other words:

⟨[ξ,η]s, ϕ⟩ = ⟨ξ, [η,ϕ]s⟩. (28)

Here, also the only important case is ε(ξ) + ε(η) + ε(ϕ) = 0. So, using (27), we can easily prove (28).
For every ξ define ad(ξ) : WL(V ) → WL(V ) by ad(ξ)(η) = [ξ,η]s. If the order of ξ is 2 , then:

ad(ξ)(η) = [ξ,η]s = [ξ,η] = 2i
(1)
ξ η.

This formula shows that all subspaces ∨kV are invariant under ad(ξ), especially ∨2V is a Lie subalgebra of WL(V )
and all ∨kV are a representation for Lie algebra ∨2V , and their inner product is invariant under this representation.
Especially, ad(ξ)|V ∈ sp(V ) and the mapping ξ 7→ ad(ξ)|V is a Lie algebra isomorphism from ∨2V to sp(V ).
Therefore, we can consider sp(V ) as a Lie subalgebra of WL(V ), and for any T ∈ sp(V ), there exists a unique
ξ ∈ ∨2V such that:

T (η) = [ξ, η] = 2i
(1)
ξ η = −2iηξ.

4. Structure of Clifford-Weyl Algebra of a supersymmetric inner product

Now, we can combine Clifford and Weyl algebra and make a superalgebra that is called Clifford-Weyl algebra [5].
We must consider a super space V = V0 ⊕ V1 and a supersymmetric inner product on it. For an associative unital
algebra A, a linear map φ : V → A is called a Clifford-Weyl map whenever for all homogeneous vectors x, y ∈ V :

φ(x)φ(y) + (−1)xyφ(y)φ(x) = 2⟨x, y⟩1.

In a superspace V = V0 ⊕V1 with a supersymmetric inner product, there exists a unique associative unital algebra,
denoted by CLW (V ) which has the following properties.

1. V is a subspace of CLW (V ) and is a generator of this algebra.

2. For all homogeneous elements x, y ∈ V we have:

xy + (−1)xyyx = 2⟨x, y⟩1.

3. For every associative unital algebra A, any Clifford-Weyl map φ : V → A is extended uniquely to an algebra
homomorphism φ̃ : CLW (V ) → A.

This algebra naturally contains CL (V0) andWL (V1). In fact, the inclusion maps V0 → CLW (V ) and V1 → CLW (V )
are respectively Clifford and Weyl maps, and extend to the following algebra homomorphism

CL (V0) → CLW (V ), WL (V1) → CLW (V ).

These homomorphisms imbed the algebras CL (V0) and WL (V1) into CLW (V ). It can be proved that CLW (V ) =
CL (V0) ⊗̂WL (V1) (tensor multiplication of super algebras [4]). It is enough to consider the following map which
is a CliffordWeyl map

V0 ⊕ V1 −→ CL (V0) ⊗̂WL (V1)

x+ ξ 7−→ x⊗ 1 + 1⊗ ξ.

This map extends to an algebra homomorphism from CLW (V ) to CL (V0) ⊗̂WL (V1) which is an isomorphism.
For simplicity, we denote arbitrary elements of CL (V0) with symbols x,y, z, . . . and elements of V0 with symbols

x, y, z, . . . . Also, we denote arbitrary elements of WL (V1) with the symbols ξ,η,ϕ, . . . and elements of V1 with
the symbols ξ, η.ϕ, . . .
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Even and odd vectors of V are anticommutative. In other words, for x ∈ V0 and ξ ∈ V1 we have xξ = −ξx. In
general, xξ = (−1)xξξx. Simple elements of CLW (V ) are in the form x⊗ξ. The Lie algebra structure of CLW (V )
is related to the Lie algebra structures of CL (V0) and WL (V1) as follows

[x⊗ ξ,y ⊗ η] = [x,y]⊗ ξη + yx⊗ [ξ,η]

= xy ⊗ [ξ,η] + [x,y]⊗ ηξ.

In several ways, we can make CLW (V ) into a superalgebra. But, for compatibility of grading and the natural inner
products on CLW (V ) that is induced by the inner products on CL (V0) and WL (V1), we choose the following
grading for CLW (V )

ε(x⊗ ξ) = ε(ξ).

In this grading, even and odd subspaces of CLW (V ) are as follows

CLW (V )0 = CL (V0)⊗WL (V1)0 , CLW (V )1 = CL (V0)⊗WL (V1)1 .

For this grading, the super Lie bracket of simple elements of CLW (V ) satisfies the following relation

[x⊗ ξ,y ⊗ η]s = (x⊗ ξ)(y ⊗ η)− (−1)ξη(y ⊗ η)(x⊗ ξ)

= (−1)ξyxy ⊗ ξη − (−1)ξη+xyyx⊗ ηξ.

In some special cases, this cumbersome relation can be written simpler. If both x, ξ are even, then:

[x⊗ ξ,y ⊗ η]s = yx⊗ [bξ,η]− [y,x]⊗ ξη. (29)

If both x, ξ are odd, then:

[x⊗ ξ,y ⊗ η]s = yx⊗ [ξ,η]− [y,x]s ⊗ ξη.

The restrictions of this super Lie bracket on CL (V0) and WL (V1) are respectively the Lie bracket of CL (V0) and
the super Lie bracket of WL (V1).

The inner products on CL (V0) and WL (V1), naturally induce the following inner product on CLW (V ) that is
super symmetric for the above grading of CLW (V )

⟨x⊗ ξ, y ⊗ η⟩ = (−1)ξy⟨x, y⟩new⟨ξ, η⟩.

In other words, this inner product is symmetric on CLW (V )0 and is alternating on CLW (V )1 and these subspaces
are orthogonal to each other.

Theorem 4.1. For arbitrary elements of CLW (V ) such as X,Y ,Z, we have

⟨XY , Z⟩ = (−1)X⟨Y , ZX⟩, ⟨XY , Z⟩ = ⟨X, Y Z⟩. (30)

Proof. We can assume ε(X) + ε(Y ) + ε(Z) = 0, because in other cases, both sides of (30) is zero. Assume
X = x⊗ ξ,Y = y ⊗ η,Z = z ⊗ ϕ. Then we have

⟨XY , Z⟩ = ⟨(x⊗ ξ)(y ⊗ η), z ⊗ ϕ⟩ = ⟨(−1)ξyxy ⊗ ξη, z ⊗ ϕ⟩
= (−1)ξy+(ξ+η)z⟨xy, z⟩new⟨ξη, ϕ⟩
= (−1)ξy+(ξ+η)z⟨x, yz⟩new⟨ξ, ηϕ⟩
= (−1)ξy+(ξ+η)z+ηz+ξ(y+z)⟨(x⊗ ξ), (y ⊗ η)(z ⊗ ϕ)⟩
= ⟨(x⊗ ξ), (y ⊗ η)(z ⊗ ϕ)⟩ = ⟨X Y Z⟩,

⟨XY , Z⟩ = (−1)ξy+(ξ+η)z⟨xy, z⟩new⟨ξη, ϕ⟩
= (−1)ξy+(ξ+η)z+ξ⟨y, zx⟩new⟨η, ϕξ⟩
= (−1)ξy+(ξ+η)z+ξ+xϕ+η(x+z)⟨(y ⊗ η), (z ⊗ ϕ)(x⊗ ξ)⟩
= (−1)ξ⟨(y ⊗ η), (z⊗ ϕ)(x⊗ ξ)⟩ = (−1)X⟨Y , ZX⟩.

□

90



N. Boroojerdian, AUT J. Math. Comput., 6(1) (2025) 79-96, DOI:10.22060/AJMC.2023.22595.1192

Corollary 4.2. For arbitrary elements of CLW (V ) such as X,Y ,Z, we have

⟨[X,Y ]s, Z⟩ = ⟨X, [Y ,Z]s⟩.

For a simple element of CLW (V ) like x⊗ ξ, its order is defined by the sum of the order of x and ξ. The subspace
of elements of order k in CLW (V ) is denoted by CLW (k)(V ). So,

CLW (k)(V ) =
⊕

r+s=k

∧rV0 ⊗ ∨sV1.

For example:

CLW (1)(V ) = V0 ⊕ V1 = V,

CLW (2)(V ) = ∧2V0 ⊕ ∨2V1 ⊕ (V0 ⊗ V1) .

For any X ∈ CLW (V ) the operator ad(X) : CLW (V ) → CLW (V ) is defined by ad(X)(Y ) = [X,Y ]s. If the
order of X is 2 , then all subspaces CLW (k)(V ) are invariant under ad(X). Especially, CLW (2)(V ) is a sub Lie
superalgebra, and the action of CLW (2)(V ) on CLW (k)(V ) is a representation of this super Lie algebra.

An important point here is that the Lie superalgebra CLW (2)(V ) is naturally isomorphic to osp(V ) (ortho-
symplectic Lie superalgebra) via the following isomorphism

CLW (2)(V ) −→ osp(V )
X 7−→ ad(X) |V .

Via this isomorphism, we find that:

osp0(V ) = ∧2 (V0)⊕ ∨2 (V1) , osp1(V ) = V0 ⊗ V1.

Corollary 4.3. For any T ∈ osp(V ) there exists a unique X ∈ CLW (2)(V ) such that

∀z ∈ V T (z) = [X, z]s = [X, z].

5. Star structures on the Clifford-Weyl algebras

The star structures are defined only in complex spaces. In this section, all spaces are complex. For physical
applications in antiparticles representation [3], we need to introduce star structures into the scene. For a (complex)
space V , a mapping x 7→ x∗ on V is called a star structure on V if it is conjugate linear and is its inverse, i.e.
x∗∗ = x. For example, for any real space W,WC has a natural star structure u+ iv 7→ u− iv. It can be seen that
every star structure comes from this example. In fact, for a complex space V which has a star structure, the set of
selfadjoint vectors (i.e. x∗ = x ) form a real subspace W , which WC is naturally isomorphic to V , and under this
isomorphism, the star operator on V transforms to the natural star operator on WC

A complex superspace with a star structure on its underlying space is called a star superspace whenever ε (x∗) =
ε(x). In this case, we can restrict the star operator to the even and odd subspaces that make them to have a star
structure. On the contrary, having separate star structures on the even and odd subspaces is equivalent to have a
star structure on the whole superspace.

A star algebra is an algebra with a star structure on its underlying vector space such that (xy)∗ = y∗x∗.
But, a star superalgebra is a superalgebra with a star structure on its underlying supervector space such that
(xy)∗ = (−1)xyy∗x∗

If V has a star structure and is equipped with a symmetric or alternating inner product, we say the star structure
is compatible with the inner product, whenever:

⟨x∗, y∗⟩ = ⟨x, y⟩. (31)

Any star vector space that has a compatible symmetric or alternating inner product, is made by complexification
of a real space with symmetric or alternating real inner product.

In the case of symmetric inner products that have a compatible star structure, the following operation creates
a Hermitian inner product in the space

(x, y) 7→ (x | y) = ⟨x, y∗⟩.
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This Hermitian inner product are not necessarily positive definite. The relationship between the star operator and
this Hermitian inner product is (x∗ | y∗) = (x | y).

But in the case of alternating inner products that have a compatible star structure, the following operation
creates a Hermitian multiplication on the space

(x, y) 7→ (x | y) = i⟨x, y∗⟩.

In this case, this Hermitian inner product is necessarily indefinite and its relation with the star operator is (x∗ | y∗) =
−(x | y).

In superspaces that have a star structure and a supersymmetric inner product, we say that the star operator is
compatible with the inner product whenever:

⟨x∗, y∗⟩ = ⟨x, y⟩.

So, we can define a natural Hermitian inner products on the superspace as follows

(x | y) =

{
⟨x, y∗⟩ one of x, y is even ,

i⟨x, y∗⟩ both x, y are odd
. (32)

Even and odd subspaces are orthogonal to each other and the star operator has the following properties for this
Hermitian inner product

(x∗ | y∗) = (−1)xy(x | y).

If a vector space V has a star structure, a star structure is induced on the exterior algebra
∧
V as follows:

(x1 ∧ · · · ∧ xk)
∗
= x∗

k ∧ · · · ∧ x∗
1.

So, we have; (x∧y)∗ = y∗∧x∗. This star structure does not respect the superalgebra structure of
∧
V but respects

its ordinary algebra structure.
If a symmetric inner product on V is compatible with its star structure, then the symmetric inner product that

is induced on
∧
V is compatible with the induced star structure. In this case, we can also construct a star operator

on CL(V ) that make this algebra into a star algebra. To construct this star operator on CL(V ), consider the map
x 7→ x∗ from V to CL(V )opp. This is a Clifford map and is extended to an algebra isomorphism from CL(V ) to

CL(V )
opp

. This isomorphism as a map on CL(V ) is denoted by x 7→ x∗ and makes CL(V )into a star algebra.
The natural isomorphism between

∧
V and CL(V ) respects the star structures on these algebras, so these star

structures are the same. Therefore, the symmetric inner products on CL(V ) are also compatible with its star
structure.

The relation between the star operator and the Lie bracket on CL(V ) is as follows:

[x, y]∗ = − [x∗, y∗] .

If V has a star structure, then
∨
V as a superalgebra will have a star structure as follows:

(ξ1 ∨ · · · ∨ ξk)
∗
= (−1)

k(k−1)
2 ξ∗1 ∨ · · · ∨ ξ∗k.

This definition implies the following relation

(ξ ∨ η)∗ = (−1)ξηη∗ ∨ ξ∗.

If an alternating inner product on V is compatible with its star structure, then the super symmetric inner product
that is induced on the superalgebra

∨
V is compatible with the induced star structure. In this case, we can also

construct a star operator on WL(V ) that make this superalgebra into a star superalgebra.
To construct this star operator on WL(V ), first, we remind that for each superalgebra A = A0⊕A1, the notation

Asopp refers to the superspace A which is considered by the following new multiplication: a · b = (−1)abba By this

multiplication, Asopp is also a superalgebra. Now, consider the map x 7→ x∗ from V to WL(V )
sopp

. This is a

Weyl map and is extended to an algebra isomorphism from WL(V ) to WL(V )
sopp

. This isomorphism as a map on
WL(V ) is denoted by ξ 7→ ξ∗ and makes WL(V ) into a star superalgebra.

The natural isomorphism between
∨
V and WL(V ) respects the star structures on these superalgebras, so these

star structures are the same. Therefore, the supersymmetric inner products on WL(V ) are also compatible with
its star structure.
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The relation between the star operator and the super Lie bracket on WL(V ) is as follows:

([ξ,η]s)
∗
= − [ξ∗,η∗]

s

If V = V0⊕V1 is a superspace with a supersymmetric inner product and a compatible star structure, we can extend
its star operator on CLW (V ) such that it becomes a star superalgebra. To this end, consider the mapping x 7→ x∗

from V to CLW (V )sopp which is a Clifford-Weyl map and extends to an algebra isomorphism from CLW (V ) to
CLW (V )sopp. This extended mapping is denoted by the same symbol *. Restrictions of this star operator on
CL (V0) and WL (V1) are the same as the star operators defined above and in general:

(x⊗ ξ)∗ = (−1)xξx∗ ⊗ ξ∗.

As we saw in (32), we can define a Hermitian inner product on CLW (V ) such that

(X∗ | Y ∗) = (−1)XY (X | Y ).

This Hermitian inner product for simple elements is done as follows:

(x⊗ ξ | y ⊗ η) = (x | y)(ξ | η)

6. Roots and weights for ortho-symplectic Lie superalgebras

6.1. Orthogonal Lie algebras

For a complex space V and a symmetric inner product on it, the Lie algebra o(V ) has a natural imbedding in
CL(V ) and is isomorphic to ∧2V . By using the Lie algebra structure of CL(V ), we can naturally find roots of o(V )
and weights of representations of o(V ) on ∧kV and the whole of CL(V ). We can assume V has a compatible star
structure and the restriction of the inner product on the real subspace of selfadjoint vectors is positive definite. So,
there exists an orthonormal base of selfadjoint vectors like {v1, . . . , vd} (i.e. v∗i = vi, ⟨vi, vj⟩ = δij ). First, suppose
that d is even and d = 2n. In this case, we can construct a base in the form {e1, . . . , en, e∗1, . . . , e∗n} such that

⟨ei, ej⟩ = ⟨e∗i , e∗j ⟩ = 0, ⟨ei, e∗j ⟩ = δij . (33)

For example, put

e1 =
1√
2
(v1 + iv2) , . . . , en =

1√
2
(v2n−1 + iv2n) .

Put Hi = 1
2ei ∧ e∗i , i = 1, . . . , n and b = span {H1, . . . ,Hn}. Since {H1, . . . ,Hn} is linearly independent and

[Hi, Hj ] = 0, b is a commutative Lie subalgebra of ∧2V and is n-dimensional, therefore, it is a Cartan subalgebra
of ∧2V [7]. The dual base of {H1, . . . ,Hn} is denoted by

{
H1, . . . ,Hn

}
. For the representation of ∧2V on V , we

find that:

ad (Ht) (ei) = [Ht, ei] = δitei = Hi (Ht) ei,

ad (Ht) (e
∗
i ) = [Ht, e

∗
i ] = −δite

∗
i = −Hi (Ht) e

∗
i .

These equations mean that ±Hi are the weights of this representation and the eigen subspaces of these weights
are also one-dimensional [7]. From these relations, we can obtain important results about the weights of the
representation of ∧2V on ∧mV .

Note that from (12) for x ∈ ∧2V we have:

ad(x) (y1 ∧ · · · ∧ ym) =

m∑
i=1

y1 ∧ · · · ∧ ad(x) (yi) ∧ · · · ∧ ym.

For simplicity for any vector x ∈ V and α = 0, 1, put:

xα =

{
x α = 1,

1 α = 0
.

For any k1, . . . , kn, l1, . . . , ln ∈ {0, 1} such that k1 + · · ·+ kn + l1 + · · ·+ ln = m the following combination of Hi,s
is a weight of the representation of ∧2V on ∧mV

(k1 − l1)H
1 + · · ·+ (kn − ln)H

n.
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The following k-multivector is an eigenvector for this eigenfunctional

ek1
1 ∧ · · · ∧ ekn

n ∧ (e∗1)
l1 ∧ · · · ∧ (e∗n)

ln .

Especially, in the case k = 2, nonzero weights are roots of ∧2V . So, the roots of ∧2V are the following functionals

±
(
Hi +Hj

)
,±

(
Hi −Hj

)
(1 ≤ i < j ≤ n).

Now, suppose V is odd-dimensional and d = 2n+1. In this case, by using an orthonormal base like {v1, . . . , v2n, e},
in the same way, we can construct a base {e1, . . . , en, e∗1, . . . , e∗n, e} such that (33) is satisfied and
⟨ei, e⟩ = ⟨e∗i , e⟩ = 0.

We use the same definitions for Hi, s and put b = span {H1, . . . ,Hn}. So, b is a Cartan subalgebra of ∧2V too.
The following relations hold

ad (Ht) (ei) = Hi (Ht) ei,

ad (Ht) (e
∗
i ) = −Hi (Ht) e

∗
i ,

ad (Ht) (e) = 0.

These equations mean that ±Hi and zero functional are the weights of this representation and the eigensubspaces
of these weights are also one-dimensional. From these relations, we can also find the weights of the representation
of ∧2V on ∧mV .

For any k1, . . . , kn, l1, . . . , ln, l ∈ {0, 1} such that k1 + · · ·+ kn + l1 + · · ·+ ln + l = m the following combination
of Hi,s is a weight of the representation of ∧2V on ∧mV

(k1 − l1)H
1 + · · ·+ (kn − ln)H

n + l × 0.

The following k-multivector is an eigenvector for this eigenfunctional

ek1
1 ∧ · · · ∧ ekn

n ∧ (e∗1)
l1 ∧ · · · ∧ (e∗n)

ln ∧ el.

Especially, in the case k = 2, roots of ∧2V are nonzero weights, so roots of ∧2V are the following functionals

±
(
Hi +Hj

)
,±

(
Hi −Hj

)
,±Hi (1 ≤ i < j ≤ n).

6.2. Symplectic Lie algebras

For a complex space V and an alternating inner product on it, the Lie algebra sp(V ) has a natural imbedding in
WL(V ) and is isomorphic to ∨2V . By using the Lie algebra structure of WL(V ), we can naturally find roots of
sp(V ) and weights of representations of sp(V ) on ∨mV and the whole of WL(V ). Suppose

{
ξ1, . . . , ξn, ξ

1, . . . , ξn
}

is a symplectic base for V , that means:

⟨ξi, ξj⟩ = ⟨ξi, ξj⟩ = 0, ⟨ξi, ξj⟩ = δji .

Put Ki =
1
2ξi ∨ ξi, i = 1, . . . , n. By (81) we find that [Ki,Kj ] = 0 and the subspace b = span {K1, . . . ,Kn} is a

Cartan subalgebra of ∨2V . Dual base of {K1, . . . ,Kn} is denoted by
{
K1, . . . ,Kn

}
and for the representation of

∨2V on V , we find that:

ad (Kt) (ξi) = [Kt, ξi] = −δitξi = −Ki (Kt) ξi,

ad (Kt)
(
ξi
)
=

[
Kt, ξ

i
]
= δitξ

i = Ki (Kt) ξ
i.

These equations mean that ±Ki are the weights of this representation and the eigen subspaces of these weights are
also one-dimensional. From these relations, we can compute the weights of the representation of ∨2V on ∨mV .

Note that from (24) we can deduce the following relation for every ξ ∈ ∨2V

ad(ξ) (η1 ∨ · · · ∨ ηk) =

k∑
i=1

η1 ∨ · · · ∨ ad(ξ) (ηi) ∨ · · · ∨ ηk.

For each ξ ∈ V , put ξk = ξ ∨ · · · ∨ ξ ( k term). For any non-negative integer k1, . . . , kn, l1, . . . , ln such that
k1+ · · ·+kn+ l1+ · · ·+ ln = m the following combination of Ki, s is a weight of the representation of ∨2V on ∨mV

(k1 − l1)K
1 + · · ·+ (kn − ln)K

n.
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Because, the symmetric multivector ξl11 ∨ · · · ∨ ξlnn ∨
(
ξ1
)k1 ∨ · · · ∨ (ξn)

kn whose order is m, is an eigenvector for
this functional. So, for any integer a1, . . . , an such that |a1|+ · · ·+ |an| ≤ m and |a1|+ · · ·+ |an| −m is even, the
functional a1K

1 + · · ·+ anK
n is a weight for this representation. In particular, the roots of ∨2V are the following

functional.

±
(
Ki +Kj

)
,±

(
Ki −Kj

)
,±2K i (1 ≤ i < j ≤ m).

Moreover, for the representation of ∨2V on WL(V ) any integer combination of Ki, s is a weight and the eigensub-
space of any weight is infinite dimensional.

6.3. Orthosymplectic Lie superalgebras

For a complex superspace V = V0 ⊕ V1 and a supersymmetric inner product on it, the Lie superalgebra osp(V ) [2]
has a natural imbedding in CLW (V ) and is isomorphic to CLW (2)V . By using the Lie superalgebra structure of
CLW (V ), we can naturally find roots of osp(V ) and weights of representations of osp(V ) = ∧2V0⊕V2V1⊕(V0 ⊗ V1)
on CLW (k)V and whole of CLW (V ).

First suppose V0 is even dimensionaland dim (V0) = 2n, dim (V1) = 2m. For a suitable star structure, we can
consider a base {e1, . . . , en, e∗1, . . . , e∗n} for V0 and a base

{
ξ1, . . . , ξn, ξ

1, . . . , ξn
}
for V1 such that:

⟨ei, ej⟩ = ⟨e∗i , e∗j ⟩ = 0, ⟨ei, e∗j ⟩ = δij ,

⟨ξi, ξj⟩ = ⟨ξi, ξj⟩ = 0, ⟨ξi, ξj⟩ = δji .

Put Hi = 1
2ei ∧ e∗i , (i = 1, . . . , n),Kj = 1

2ξj ∨ ξj , (j = 1, . . . ,m). These are some vectors in osp0(V ) and
b = span {H1, . . . ,Hn,K1, . . . ,Km} is a Cartan subalgebra for osp0(V ). If b1 = span {H1, . . . ,Hn} and
b2 = span {K1, . . . ,Km}, then b = b1 ⊕ b2 and b∗ = b∗1 ⊕ b∗2.

So, the functionals H1, . . . ,Hn,K1, . . . ,Km, that are defined above, can be considered as functionals on b and
is the dual base of {H1, . . . ,Hn,K1, . . . ,Km}. Moreover, for α ∈ b∗1 and β ∈ b∗2 and u ∈ b1 and v ∈ b2 we have:

(α+ β)(u+ v) = α(u) + β(v).

All subspaces ∧rV0 ⊗ ∨sV1 of CLW (V ) are invariant under ad(X) for X ∈ osp0(V ), so they are a representation
for osp0(V ). By (29) we can find the relation between the representation of ∧2V0 on ∧rV0 and the representation
of ∨2V1 on ∨sV1 and the representation of osp0(V ) on ∧rV0 ⊗ ∨sV1 as follows. For x ∈ ∧2V0 and ξ ∈ ∨2V1 and
y ∈ ∧rV0 and η ∈ ∨sV1 we have:

ad(x)(y ⊗ η) = ad(x)(y)⊗ η, ad(ξ)(y ⊗ η) = y ⊗ ad(ξ)(η).

This relation shows that if α is a weight for the representation of ∧2V0 on ∧rV0 and β is a weight for the representation
of ∨2V1 on ∨sV1, then α + β is a weight for the representation of osp0(V ) on ∧rV0 ⊗ ∨sV1. In fact, if y ∈ ∧rV0 is
an eigenvector for α and η ∈ ∨sV1 is an eigenvector for β then y ⊗ η is an eigenvector for α+ β. Because for any
h = h1 + h2 ∈ b = b1 ⊕ b2 we have:

ad(h)(y ⊗ η) = ad (h1) (y ⊗ η) + ad (h2) (y ⊗ η) (34)

= ad (h1) (y)⊗ η + y ⊗ ad (h2) (η)

= α (h1)y ⊗ η + β (h2)y ⊗ η

= (α+ β)(h)(y ⊗ η).

Since osp0(V ) = ∧2V0 ⊕ ∨2V1, the set of even roots of osp(V ) (i.e. the set of roots of osp0(V )) is the union of the
sets of roots of ∧2V0 and ∨2V1,

±
(
Hi +Hj

)
,±

(
Hi −Hj

)
(1 ≤ i < j ≤ n),

±
(
Ki +Kj

)
,±

(
Ki −Kj

)
,±2K i (1 ≤ i < j ≤ m).

Also, odd roots of osp(V ) are weights of adjoint representation of osp0(V ) on osp1(V ) = V0 ⊗ V1. So, by (34) we
find the odd roots of osp(V ) by adding weights of representation ∧2V0 on V0 and wights of representation of ∨2V1

on V1 to each other

±Hi ±Kj (i = 1, . . . , n, j = 1, . . . ,m).

In this case, all odd roots are isotropic. In general, an odd root α is nonisotropic iff 2α is an even root. We can
find even and odd weights of representation osp(V ) on CLW (m)(V ) in the same way.
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Now, suppose V0 is odd dimensional and dim (V0) = 2n+1. Using the same notation as before, consider a base
{e1, . . . , en, e∗1, . . . , e∗n, e} for V0 such that:

⟨ei, ej⟩ = ⟨e∗i , e∗j ⟩ = 0, ⟨ei, e∗j ⟩ = δij , ⟨ei, e⟩ = ⟨e∗i , e⟩ = 0.

As before, we construct Hi,s and the roots of ∧2V are the following functionals

±
(
Hi +Hj

)
,±

(
Hi −Hj

)
,±Hi (1 ≤ i < j ≤ n).

Now, the set of even the roots of osp(V ) is the union of the sets of roots of ∧2V0 and ∨2V1

±
(
Hi +Hj

)
,±

(
Hi −Hj

)
±Hi (1 ≤ i < j ≤ n),

±
(
Ki +Kj

)
,±

(
Ki −Kj

)
,±2K i (1 ≤ i < j ≤ m).

By (34) the odd roots of osp(V ) are as follows

±Hi ±Kj , ±Kj (i = 1, . . . , n j = 1, . . . ,m).

Here, ±Kj ,s are non-isotropic roots, and the rest are isotropic.
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