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ABSTRACT: In this paper, we present two methods to find the strictly effi-
cient and weakly efficient points of multi-objective programming (MOP) problems
in which their objective functions are pseudo-convex and their feasible sets are
polyhedrons. The obtained efficient solutions in these methods are the extreme
points. Since the pseudo-convex functions are quasi-convex as well, therefore the
presented methods can be used to find efficient solutions of the (MOP) problem
with the quasi-convex objective functions and the polyhedron feasible set. Two
experimental examples are presented.
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1. Introduction

Multi-objective programming (MOP) problems are a well-known and applicable research field in optimization and
operations research. The multi-objective optimization problems are included several objective functions and a set
of feasible spaces. An important class of them is included multi-objective problems with several pseudo-convex
objective functions and a polyhedron as its feasible set; we call it MOPP problem. It is worth mentioning that the
multi-objective problems with the convex and quasi-convex objective functions and the polyhedron feasible set are
also MOPP problems. For example, the multi-objective linear fractional programming (MOLFP) problem is a kind
of MOPP problem.

There are many methods to find efficient solutions of multi-objective optimization problems which are con-
structed based on iterative, scalarization, interactive and etc. methods. (see for instance [3, 7]). One of the
well-known methods to find the efficient solution of a MOP is the weighted sum method; by this method, the
MOP is converted to an optimization problem with a single objective function. The weights of MOP objective
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functions usually are determined according to the opinion of the decision maker. If the weights are non-negative
then the optimal solutions are weakly efficient and especially, if the weights are positive then the optimal solutions
are efficient. Besides the weighted sum approach, the constraint method is also a well-known technique to solve
MOP problems. In this technique; there is no aggregation of objective functions, instead, only one of the original
objectives is optimized, while the others are transformed into constraints, this approach was introduced in [9] and
an extensive discussion can be found in [5].

With regards to the structure of MOPP problems [10], sometimes, it may not be possible to find an efficient
solution of MOPP problems with the mentioned methods. Researchers have provided some methods to find efficient
solutions for specific cases of the MOPP problems such as MOLFP or MOP problems with quasi-convex objective
functions. Some researchers used iterative methods to solve multiobjective linear fractional programming (MOLFP)
problems [11, 14]. Transforming the MOLFP problems to linear programming problems for finding the efficient
solution of the MOLFP problems is another technique presented by researchers [12, 13]. Also, methods for solving
the MOP problems with the quasi-convex objective functions are provided [2, 15]. but in general, no method has
been provided for finding the efficient solution of MOP problems with the pseudo-convex functions.
In this paper, two methods for finding efficient solutions (Pareto) and weakly efficient solutions are presented. In
these methods, the extreme points of MOPP problems are identified and the efficiency status (Pareto and weak) of
these points are determined. In this study, for presenting our methods, we use the constraint and the weighted sum
methods. In Sections 2 and 3 some notions, definitions, and properties which are required in the main discussion
are introduced. In Section 4, the main discussions and properties are presented. Two examples to illustrate our
approach are presented in Section 5 and the final section is the conclusion section.

2. The single objective MOPP problem

Consider the following single-objective problem.

min f0(x);

s.t. x ∈ X = {x ∈ Rn : Ax = b},
(1)

where, X ⊆ Rn is the feasible set and Ax = b is the affine condition, A ∈ Rm×n, b ∈ Rm, rankA = m < n, also
the objective function f0 is pseudo-convex.

Definition 2.1. For a convex set X ⊂ Rn the function f : X −→ R is called quasiconvex if for each x1, x2 ∈ X
and λ ∈ (0, 1), then, f(x1 + λ(x2 − x1)) ⩽ max{f(x1), f(x2)}.

Definition 2.2. The differentiable function f : Rn −→ R is pseudo-convex if and only if dom f is convex and for
all x, y ∈ domf if f(y) < f(x), then, ▽f(x)t(y − x) < 0.

For example, linear fractional programming (LFP) problems are pseudo-convex optimization problems ([1, 6]).

Theorem 2.3. Suppose X ⊂ Rn is a convex set, and f : X −→ R is pseudo-convex function, then f is a quasi-
convex function as well.

Proof. See [1]. □

Theorem 2.4. The differentiable function f : Rn −→ R is quasiconvex if and only if dom f is convex and for all
x, y ∈ domf if f(y) ⩽ f(x), then, ▽f(x)t(y − x) ⩽ 0.

Proof. See [1, 4]. □

Definition 2.5. In Problem (1), a vector d ̸= 0 is called an improving feasible direction in x0 ∈ X if for each
λ ∈ (0, δ), we have (x0 + λd) ∈ X, and f0(x0 + λd) < f0(x) for some δ > 0.

Theorem 2.6. For each feasible direction vector d ̸= 0 of (1) in x ∈ X, if ▽f0(x)
td ⩾ 0, then x is an optimal

solution of (1) and x ∈ X is a unique optimal solution of (1) if ▽f0(x)
td > 0.

Proof. Let d ̸= 0 be a feasible direction in x ∈ X; therefore, there is δ > 0 such that for each λ ∈ (0, δ), we have
(x+ λd) ∈ X. Because f0 is pseudo-convex, according to the Definition 2.2, for each feasible direction vector d ̸= 0
by choosing y = x + λd, if ▽f0(x)

t(x + λd − x) = λ ▽ f0(x)
td ⩾ 0 then f0(x + λd) ⩾ f(x); since λ > 0, it can

be concluded that, if ▽f0(x)
td ⩾ 0, then f0(x + λd) ⩾ f0(x), hence x is an optimal solution of (1). Because a

pseudo-convex function is quasi-convex as well, and according to the assumption ▽f0(x)
td > 0, therefore, according

to Theorem 2.4, f0(x+ λd) > f0(x), so, x is a unique optimal solution of (1). □
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Corollary 2.7. By considering Theorem 2.6, we can conclude that if ▽f0(x)
td < 0, then x is not an optimal

solution and must be improved.

Definition 2.8. In Problem (1), vector d ̸= 0 is called an improving feasible direction in x ∈ X if Ad = 0,−dj ⩽ 0
and ▽f0(x)

td < 0. (See [1]).

Now we can obtain an improving feasible direction vector in x ∈ X as follows;
in Problem (1), assuming that rankA = m < n and for each vector x that applies to constraints we partition x as
x = (xB , xN ), where, xB ⩾ 0 is the basic variables of vector x with dimension m and xN is the non-basic variables
of vector x with dimension n − m, and also, Matrix A can be partitioned as A = [B,N ], and d is partitioned as
dt = [dtB , d

t
N ], where, B and N are martix of coefficients of the basic variables (xB) and the non-basic variables

(xN ) respectively. Similar to [8] we can obtain vector d ̸= 0 as follows.

Ad = [B,N ]

[
dB
dN

]
= BdB +NdN = 0,

consequently,
dB = −B−1NdN .
Now, we have
▽f0(x) = ▽f0(xB , xN )t =

= [▽Bf0(B
−1b−B−1NxN , xN )t,▽Nf0(B

−1b−B−1NxN , xN )t] =
(
0, ∂f

∂xB

∂xB

∂xN
+ ∂f

∂xN

)
=

(0,▽Nf0(x)
t −▽Bf0(x)

tB−1N);
vector d ̸= 0 is an improving feasible direction, therefore,

0 > ▽f0(x)
td = (0,▽Nf0(x)

t −▽Bf0(x)
tB−1N)t

[
dB
dN

]
= [▽Nf0(x)

t −▽Bf0(x)
tB−1N ]dN .

Denote rtN = (rtB , r
t
N ) = (0,▽Nf(x)t −▽Bf(x)

tB−1N); therefore ▽f(x)td =
∑

j /∈I rjdj < 0, where, I is the set of
the basic variables indices of vextor x.
To find the components dj /∈I of vector d, if rv = max{−rj | rj ⩽ 0, {j /∈ I}, we define dv = 1 and for all j /∈ I,
j ̸= v, dj = 0; according to this definition, ▽f(x)td = rv < 0. With increasing the non-basic variable xv, vector x

is improved in the direction of the vector d =

[
−B−1av

ev

]
to vector x+ λd, where, av is the column corresponding

to the non-basic variable xv, and λ is obtained as follows.

λ = min
1⩽j⩽m

{ bj
yjυ

: yjυ > 0}

where, b = B−1b and yυ = B−1aυ, see [8].

Finding the value of λ in the above relation is the same as doing the minimum test operation in the simplex
table related to the linear programming problem.

Corollary 2.9. Since ▽f0(x)
td = rt0N (x)dN and dN = ev, therefore, according to Theorem 2.6, if rt0N (x) ⩾ 0,

then x is an optimal solution of (1), and x is a unique optimal solution of (1), if rt0N (x) > 0 .

Theorem 2.10. If the objective function of (1) is quasi-convex, then Problem (1) has the extreme optimal solution.

Proof. See [1]. □

Corollary 2.11. According to theorems 2.3 and 2.10, Problem (1) has the extreme optimal solution.

3. Concepts of MOP problems

In the real world, problems usually are expressed as multi-objective programming (MOP). The multi-objective
optimization problems include several objective functions and a set of constraints. Indeed, there are several special
structures in multi-objective optimization problems. One class of them is multi-objective pseudo-convex program-
ming problems which contain several pseudo-convex objective functions and the feasible set like (1) (MOPP);
multi-objective linear fractional programming (MOLFP) problems are a sample of MOPP problems. Usually, there
exists conflict among objective functions in targets of the MOP problem, and usually, there doesn’ t exist any
feasible solution of an MOP problem that optimizes all objective functions. In this regard, in MOP the notions of
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efficient solutions and weak efficient solutions are introduced instead of optimal solutions.
Consider the following multi-objective programming problem:

min f(x) = (f1(x), . . . , fp(x))
t

s.t. x ∈ S,
(2)

where, S ⊆ Rn is the feasible set and fi(x), i = 1, 2, . . . , p, are the objective functions.

Definition 3.1. A point x ∈ S is an efficient solution or Pareto-optimal solution of Problem (2) if there is no
other y ∈ S such that fk(y) ≤ fk(x) for all k = 1, . . . , p and fj(y) < fj(x) for at least one j ∈ {1, . . . , p}.

Definition 3.2. A point x ∈ S is a weakly efficient solution of Problem (2) if there is no other y ∈ S such that
fk(y) < fk(x) for all k = 1, . . . , p.

Definition 3.3. A point x ∈ S is a strictly efficient solution of Problem (2) if there is no other y ∈ S, y ̸= x such
that fk(y) ≤ fk(x) for all k = 1, . . . , p.

Definitions 3.1, 3.2, and 3.3 imply that each strictly efficient solution is an efficient solution and each efficient
solution is a weakly efficient solution but the reverses, necessarily, are not true.

Definition 3.4. The point yI = (yI1 , y
I
2 , . . . , y

I
p) given by yIk = min

x∈X
fk(x) is called the ideal point of MOP.

There are many methods to find the efficient solutions in MOP. One of the most well-known methods to identify
the efficiency status of a feasible solution was proposed by Haimes and Lasdon (1971) [9]. In this method, only
one of the original objectives is minimized, while the others are transformed into constraints. The ε- constraint
problem associated with the MOP Problem (2) is formulated as:

min fj(x)

s.t. fk(x) ≤ εk, k = 1, 2, . . . , p, k ̸= j,

x ∈ X,

(3)

where, ε ∈ Rp.

Theorem 3.5. Let x∗ be an optimal solution of (3) for some j, then x∗ is a weakly efficient solution of (2), and
if x∗ be a unique optimal solution of (3) for some j, then x∗ is a strictly efficient solution of (2), and therefore x∗

is efficient.

Proof. See [9]. □

Another technique to solve the multi-objective optimization problems is the weighted sum method. By this method,
the MOP is converted to an optimization problem with a single objective function. The weights of the objective
functions of the MOP are specified by the decision maker’s point of view. If the weights are non-negative then
the optimal solutions are weakly efficient and especially, if the weights are positive then the optimal solutions are
efficient. See the theorem below.

Theorem 3.6. Suppose that x is an optimal solution of the weight sum optimization problem min
x∈X

∑p
k=1 λkfk(x)

with
∑p

k=1 λk = 1 and for all k, λk ⩾ 0. Then the following statements hold.

1) If for all k, λk ⩾ 0, then x is the weakly efficient solution.
2) If for all k, λk > 0, then x is the efficient solution.
3) If for all k, λk ⩾ 0 and x is uniqe optimal solution, then x is the strictly efficient solution.

Proof. See [7]. □

4. The proposed method to find the extreme efficient solutions of MOPP

Consider the following multi-objective problem.

min f(x) = (f1(x), . . . , fp(x))
t;

s.t. x ∈ X = {x ∈ Rn : Ax = b, −x ⩽ 0}
(4)

where, X ⊆ Rn is the nonempty feasible set, Ax = b is affine, A ∈ Rm×n, b ∈ Rm, rankA = m < n and also
the objective fk for all k = 1, 2, . . . , p are pseudo-convex. D = (

⋂p
i=k Dfk) is domain of problem (4). Note that

according to Theorem 2.3, the objective functions of (4) are quasi-convex.
Now, in this section, we propose two methods for finding the extreme efficient solutions and the extreme weakly
efficient solutions of (4).
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4.1. The ε-constraint method

First, we express the ε-constraint method for Problem (4). Let εk = ∞, k = 1, 2, . . . , j − 1, j + 1, . . . , p. Therefore,
the ε-constraint Problem (3) corresponding to Problem (4) is as follows.

min fj(x) j ∈ {1, 2, . . . , p}
s.t. fk(x) ≤ ∞, k = 1, 2, . . . , p, k ̸= j,

Ax = b,

−x ⩽ 0.

(5)

According to the constraints of (5), the feasible area of (5) is the same as the feasible area of (4). Therefore in (5),
we can remove the additional constraints fk(x) ≤ ∞, k = 1, 2, . . . , p, k ̸= j, and the above problem is transformed
into the following problem:

min fj(x) j ∈ {1, 2, . . . , p}
s.t. Ax = b,

−x ⩽ 0.

(6)

Any feasible solution of (6) is a feasible solution of (5), and also, the optimal solution of (6) is equal to the optimal
solution of (5), and according to theorem 3.5, is a weakly efficient solution of (4), and also, the unique optimal
solution of (6) is a strictly efficient and efficient solution of (4). According to what was said, we state the following
theorem.

Theorem 4.1. In Problem (6), let x ∈ X, and for j ∈ {1, 2, . . . , p}, rtjN (x) = ▽Nfj(x)
t − ▽Bfj(x)

tB−1N , if

rtjN (x) ⩾ 0, then x is a weakly efficient solution of (4), and x is a strictly efficient and efficient solution of (4), if

rtN (x) > 0.

Proof. It can be proved according to Corollary 2.9. □

Since, according to Corollary 2.11, all fj have the optimal extreme points, for this reason, in the presented method,
the efficiency status of the extreme points of the feasible set X is checked.

Theorem 4.2. Suppose x1 and x2 are the adjacent extreme points and x1 is an efficient solution. If for all k,
rtkN (x2) = ▽Nfk(x)

t −▽Bfk(x)
tB−1N < 0, then all the points between x1 and x2 are efficient solutions.

Proof. For each α ∈ (0, 1), x1+α(x2−x1) is located on the connecting line between x1 and x2. Now, contradiction,
suppose that x1 + α(x2 − x1) is not an efficient solution of MOPP problem. Then, there exists a feasible solution
y ∈ X such that fk(y) ⩽ fk(x1+α(x2−x1)) for all k and fj(y) < fj(x1+α(x2−x1)) for some j. Because fk for all
k are the pseudo-convex and quasi-convex functions, therefore fk(y) ⩽ fk(x1 + α(x2 − x1)) ⩽ max{fk(x1), fk(x2)}
for all k and fj(y) < fj(x1 + α(x2 − x1)) ⩽ max{fj(x1), fj(x2)} for some j.
On the other hand x1 and x2 are the adjacent extreme points, we can show x2 = x1+λd for some λ > 0. Therefore,
for all k, ▽fk(x2)(x1 − x2) = −λ ▽ fk(x2)d = −λrtkN (x2)dN , since for all k, rtkN (x2) < 0, λ > 0, and dN = ev,
therefore, for all k, ▽fk(x2)(x1 − x2) > 0, and since that all fk are pseudo-convex and quasi-convex functions,
therefore according to Theorem 2.4, for all k, fk(x1) > fk(x2), and max{fk(x1), fk(x2)} = fk(x1).
These relations imply that fk(y) ⩽ fk(x1) for all k and fj(y) < fj(x1) for some j which contradicts with the
assumption of the efficiency of x1. □

To find the efficient solution of (4), we design a table similar to simplex table as Table 1.

Table 1: The structure of the basic and non-basic variables of MOPP problem

xB xN RHS
rt1
rt2
... 0 ▽Nfk(x)

t −▽Bfk(x)
tB−1N fk(xB , 0)

rtp
xB I B−1N B−1b

Since, all the objective functions in (4) are pseudo-convex, with regarding to corollary 2.11, each function has
an extreme optimal solution in the polyhedron set X. Therefore, in Table 1, if rtkN > 0 for k ∈ {1, 2, . . . , p}, the
obtained solution is an extreme optimal solution of fk for k ∈ {1, 2, . . . , p}, and according to the Theorem 4.1, it
is an efficient solution of (4). Also, if rtkN ⩾ 0 for k ∈ {1, 2, . . . , p}, the obtained solution is an extreme optimal
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solution for Problem (4), and according to Theorem 4.1 is a weakly efficient solution of (4).
Now, in the following, we present an algorithm that can be used to obtain an extreme efficient solution and also an
extreme weakly efficient solution of (4).

4.2. Algorithm

Step 1. In Problem (4), we choose a extreme feasible solution x = (xB , 0).

Step 2. Calculate the vector rtk(x) = (rtkB(x), r
t
kN (x)) = (0,▽Nfk(x)

t−▽Bfk(x)
tB−1N) for all k = 1, 2, . . . , p

and we put it in the Table 1.

Step 3. If rtkN (x) > 0 for all k = 1, 2, . . . , p, then x is an extreme strictly efficient solution and efficient
solution, and also yI = (f1(x), f2(x), . . . , fp(x)) is ideal point of (4).

Step 4. If for all k, rtkN (x) ≯ 0, and for some j, rtjN (x) > 0, then x is an extreme strictly efficient solution

and efficient solution, and if for some j, rtjN (x) ⩾ 0, then x is an extreme weakly efficient solution, otherwise,
x is inefficient. To find and check the other vertex of the feasible space, go to Step 5.

Step 5. Suppose rik(x) is ith component of vector rtk(x), and I is set of basic variables indices of vector x, if
rv(x) = max{−rik(x) | rik(x) ⩽ 0, i /∈ I, k = 1, 2, . . . , p}, then the nonbasic variable xv becomes the candidate
to enter the basic. Also, using the minimum test, the output variable of the base is determined. Then go to
Step 2.

It is noteworthy, according to Theorem 4.2, if x1 and x2 be the adjacent extreme points and x1 be efficient solution,
if for all k, rtkN (x2) < 0, then y = αx1 + (1− α)x2 for α ∈ (0, 1) is efficient solution of (4).

4.3. The weighted sum method

The weight sum model of Problem (4) with weights λk ⩾ 0 and
∑p

k=1 λk = 1, is as follows.

min F0(x) =
∑p

k=1 λkfk(x)

s.t. Ax = b,

−x ⩽ 0.

(7)

According to the corollary 2.9 and Theorem 3.6; suppose x is a feasible solution of (4) and for all k, λk ⩾ 0 and∑p
k=1 λk = 1, if rt0N (x) = (▽NF0(x)

t −▽BF0(x)
tB−1N) ⩾ 0, then x is the weakly efficient solution of (4), and for

all k, λk > 0 and
∑p

k=1 λk = 1, if rt0N (x) = (▽NF0(x)
t −▽BF0(x)

tB−1N) ⩾ 0, then x is efficient soluation of (4).
Also, for all k, λk ⩾ 0 and

∑p
k=1 λk = 1, if rt0N (x) = (▽NF0(x)

t −▽BF0(x)
tB−1N) > 0, then x is strictly efficient

solution of (4).

5. Example

In this section, two examples are presented and their extreme efficient points are determined using the presented
methods.

5.1. Example 1

As mentioned, the linear fractional programming (LFP) problems are a sample of the pseudo-convex programming
problem. Here, we calculate the extreme efficient solutions and the extreme weakly efficient solutions of the multi-
objective problem with the fractional functions and the polyhedron solution set (MOLFP). Consider the following
multi-objective linear fractional programming (MOLFP) problem

min f1(x) =
−x1−x2

x1+2 ;

min f2(x) =
−x1

x2+3 ;

s.t. −3
2 x1 + x2 ⩽ 4;

x1 + x2 ⩽ 11;

2x1 + x2 ⩽ 16;

x1, x2 ⩾ 0.

(8)

The feasible solution set of (8) is shown in Figure 1.
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Figure 1: The possible area of the Problem (8)

For finding efficient solutions of Problem (8), we first start with the extreme point x1 = (0, 0, 4, 11, 16), and
check its efficiency; the requested items are calculated from Table 1 and the results are displayed in Table 2 (We
have used MATLAB 2017 software). By checking the steps of the presented algorithm, since rt1N (x1) < 0 and
rt2N (x1) ⩽ 0, and according to Step 4 of algorithm, therefore the extreme point x1 = (0, 0, 4, 11, 16) is inefficient.

Table 2: Checking the efficiency of the extreme point x1 = (0, 0, 4, 11, 16)

x1 x2 s1 s2 s3 RHS
r1 -.5 -.5 0 0 0
r2 -.33 0 0 0 0
s1 -1.5 1 1 0 0 4
s2 1 1 0 1 0 11
s3 2 1 0 0 1 16

Step 5 of the algorithm; by entering the non-base variable x2 to the base, the extreme x2 = (0, 4, 0, 7, 12) is
obtained, and by forming Table 3 and checking it with the presented algorithm, we conclude that this point is also
inefficient.

Table 3: Checking the efficiency of the extreme point x2 = (0, 4, 0, 7, 12)

x1 x2 s1 s2 s3 RHS
r1 -0.25 0 0.50 0 0
r2 -0.14 0 0 0 0
x2 -1.5 1 1 0 0 4
s2 2.5 0 -1 1 0 7
s3 3.5 0 -1 0 1 12

By continuing this process, the extreme point x3 = (2.8, 8.2, 0, 0, 2.2) is obtained (see Table 4), and by examining
the steps of the presented algorithm, since rt1N (x3) > 0, therefore according to Step 4 of the presented algorithm
the extreme point x3 = (2.8, 8.2, 0, 0, 2.2) is a strictly efficient and efficient solution of (8).

Table 4: Checking the efficiency of the extreme point x3 = (2.8, 8.2, 0, 0, 2.2)

x1 x2 s1 s2 s3 RHS
r1 0 0 0.19 0.017 0
r2 0 0 -0.04 0.02 0
x2 0 1 0.4 0.6 0 8.2
x1 1 0 -0.4 0.4 0 2.8
s3 0 0 0.4 -1.4 1 2.2

Next, by calculating rv(x) = max{−rik(x) | rik(x) ⩽ 0, i /∈ I, k = 1, 2}, the non-basic variable s1 enters the
base, and by the minimum test variable s3 leaves the base, and the extreme point x4 = (5, 6, 5.5, 0, 0) is obtained,
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and since rt1N (x4) ⩾̸ 0 and rt2N (x4) ⩾̸ 0, therefore according to Step 4 of algorithm, x4 is the inefficient solution of
(8).

Table 5: Checking the efficiency of the extreme point x4 = (5, 6, 5.5, 0, 0)

x1 x2 s1 s2 s3 RHS
r1 0 0 0 -0.30 .22
r2 0 0 0 0.28 -0.17
x2 0 1 0 2 -1 6
x1 1 0 0 -1 1 5
s1 0 0 1 -3.5 2.5 5.5

In the same way, according to Table 6, another extreme point is found, and finally, based on the proposed
algorithm and the observations of Table 6, since rt2N (x5) > 0, therefore the extreme points x5 = (8, 0, 16, 3, 0) is
strictly efficient and efficient solution of (8).

Table 6: Checking the efficiency of the extreme point x5 = (8, 0, 16, 3, 0)

x1 x2 s1 s2 s3 RHS
r1 0 -0.09 0 0 0.01
r2 0 1.05 0 0 0.16
s2 0 0.5 0 1 -0.5 3
x1 1 0.5 0 0 0.5 8
s1 0 1.75 1 0 -1 16

Table 7 presents the results of the efficiency status of the extreme feasible solutions of (8).

Table 7: Results of the efficiency of the extreme points of (8)

ROW extreme feasible solutions Efficiency status
1 (0, 0, 4, 11, 16) Inefficient
2 (0, 4, 0, 7, 12) Inefficient
3 (2.8, 8.2, 0, 0, 2.2) Strictly efficient and efficient
4 (5, 6, 5.5, 0, 0) Inefficient
5 (8, 0, 16, 3, 0) Strictly efficient and efficient

5.2. Example 2
Consider the following two-objective problem.

min f1(x) =
−1
3 x3

1 − x2 − x3;

min f2(x) =
1

x1+x2+1 − 1
3x

3
3;

s.t. x1 + x2 + x3 ⩽ 4;

3x2 − x3 ⩽ 6;

x1, x2, x3 ⩾ 0,

(9)

where, f1(x) and f2(x) are pseudo-convex functions. The feasible solution set of (9) is shown in Figure 2. First, we
check the efficiency status of the extreme point A=(0, 0, 0, 4, 6). The vectors rt1N (A) and rt2N (A) are calculated
and are located in Table 8. Since rt1N (A) ⩾̸ 0 and rt2N (A) ⩾̸ 0, therefore, the extreme point A is an inefficient
solution of (9).
In the following, since rx1

= 1, therefore the non-basic variable x1 enters the base and by the minimum test variable
s1 becomes exit from the base, and the extreme point E = (4, 0, 0, 0, 6) is obtained. By calculating the vectors
rt1N (E) and rt2N (E), Table 8 is transformed into Table 9.

Table 8: Checking the efficiency of the extreme point A = (0, 0, 0, 4, 6)

x1 x2 x3 s1 s2 RHS
r1 0 -1 -1 0 0
r2 -1 -1 0 0 0
s1 1 1 1 1 0 4
s2 0 3 -1 0 1 6
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Figure 2: The possible area of the Problem (9)

Table 9: Checking the efficiency of the extreme point E=(4, 0, 0, 0, 6)

x1 x2 x3 s1 s2 RHS
r1 0 15 15 16 0
r2 0 0 0.20 0.20 0
x1 1 1 1 1 0 4
s2 0 3 -1 0 1 6

According to Table 9, since rt1N (E) > 0, therefore the extreme point E is the unique optimal solution of f1(x)
and is a strictly efficient solution and an efficient solution of (9).
In the same way, the extreme points D,C, F, and B are found (see Tables 10-13), since rt2N (F ) > 0, therefore the
extreme point F is strictly efficient as well. therefore Problem (9) has two extreme points E and F that both are
strictly efficient and efficient.

Table 10: Checking the efficiency of the extreme point D=(2, 2, 0, 0, 0)

x1 x2 x3 s1 s2 RHS
r1 0 0 3.99 4 -0.99
r2 0 0 -6.33 0.20 6.53
x1 1 0 1.33 1 -0.33 2
x2 0 1 -0.33 0 0.33 2

Table 11: Checking the efficiency of the extreme point C = (0, 2.5, 1.5, 0, 0)

x1 x2 x3 s1 s2 RHS
r1 1 0 0 1 0
r2 1.47 0 0 1.76 -0.49
x3 0.75 0 1 0.75 -0.25 1.5
x2 0.25 1 0 0.25 0.25 2.5

Table 12: Checking the efficiency of the extreme point F = (0, 0, 4, 0, 10)

x1 x2 x3 s1 s2 RHS
r1 1 1 0 0 0
r2 15 15 0 16 0
x3 1 1 1 1 0 4
s2 1 4 0 1 1 10

Table 13: Checking the efficiency of the extreme point B = (0, 2, 0, 2, 0)

x1 x2 x3 s1 s2 RHS
r1 0 0 -1.33 0 0.33
r2 -0.33 0 -0.11 0 0.11
s1 1 0 1.33 1 -0.33 2
x2 0 1 -0.33 0 0.33 2
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In the following, we find an efficient solution of (9), by the weight sum method. for this purpose, we consider
λ = (0.2, 0.8).
The weighted model of Problem (9) is as follows.

min F0(x) = 0.2(−1
3 x3

1 − x2 − x3) + 0.8( 1
x1+x2+1 − 1

3x
3
3);

s.t. x1 + x2 + x3 ⩽ 4;

3x2 − x3 ⩽ 6;

x1, x2, x3 ⩾ 0.

(10)

The optimal solution of the single-objective Problem (10) is an efficient solution of (9), and its unique optimal
solution is also a strictly efficient solution of (9). The obtained efficient solution from this method for (9) is the
extreme point E=(4, 0, 0, 0, 6). To reach this efficient point, we start from point A, and by calculating the vector
rt0N (A) = (▽NF0(A)t −▽BF0(A)tB−1N), we form Table 14.
Table 14 is not optimal, therefore A is inefficient. In Table 14, rv(x) = max{−ri0(x) | ri0(x) ⩽ 0, i /∈ I, } = 0.80,
therefore the non-basic variable x1 enters the base and by the minimum test, variable s1 exists from the base, and
the extreme point E = (4, 0, 0, 0, 6) is obtained, and for checking the optimality status E, we calculate the vector
rt0N (E) = (▽NF0(E)t −▽BF0(E)tB−1N). (See Table 15).
Since rt0N (E) > 0, therefore E is the unique optimal solution of (10), and a strictly efficient solution and efficient
solution of (10).

Table 14: Checking the efficiency of the extreme point A = (0, 0, 0, 4, 6) for λ = (0.2, 0.8)

x1 x2 x3 s1 s2 RHS
r -0.80 -1 -0.20 0 0
s1 1 1 1 1 0 4
s2 0 3 -1 0 1 6

Table 15: Checking the efficiency of the extreme point E = (4, 0, 0, 0, 6) for λ = (0.2, 0.8)

x1 x2 x3 s1 s2 RHS
r 0 3 3.16 3.36 0
x1 1 1 1 1 0 4
s2 0 3 -1 0 1 6

6. Discussion and Results

The multi-objective optimization problem is one of the most important problems of optimizations in which finding
an efficient solution of the MOP is of great importance. It is not easy to find an efficient solution of MOP problems
with common methods such as the weighted or constraint methods. Sometimes, we come across a multi-objective
problem in that their objective functions are the pseudo-convex functions and a polyhedron; we call them MOPP
problems. In this type of problem, due to the type of objective function, the efficient solution may not be found by
applying the methods that are usually used to determine the efficient solution. Therefore, in this paper, we present
two methods to find the extreme weakly efficient and efficient solutions. Because the set of quasi-convex and convex
functions are subsets of the set of pseudo-convex functions, therefore, the presented method can be used for MOPP
problems with the quasi-convex and convex functions.
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