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A distributionally robust approach for the risk-parity portfolio selection problem
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ABSTRACT: Risk-parity is one of the most recent and interesting strategies in
the portfolio selection area. Considering the mean-standard-deviation risk measure,
this paper studies the risk-parity problem under the uncertainty of the covariance
matrix. Assuming that the uncertainty is represented by a finite set of scenarios,
the problem is formulated as a scenario-based stochastic programming model. Then,
since the occurrence probabilities of scenarios are not known with certainty, two
ambiguity sets of distributions are considered, and corresponding to each one, a dis-
tributionally robust optimization model is presented. Computational experiments
on real-world instances taken from the literature confirm the importance of the
proposed models in terms of stability, volatility and Sharpe-ratio.
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1. Introduction

Portfolio selection is one the most important research fields in finance and operations research. As one of the
pioneer researchers in this field, Markowitz [21] presented a bi-objective optimization model making a trade-off
between the maximization of the expected portfolio return and the minimization of its variance. Markowitz model
has been a basis for various theories in the portfolio management and many improvements have been proposed in
the literature to refine its drawbacks. One of the main drawbacks of the Markowitz model is its sensitivity to input
parameters [3], and in this regard, Chopra and Ziemba [10] showed that small changes in the expected return of
assets may make massive changes in the optimal values of assets weights obtained by Markowitz model. There
are different types of strategies to tackle the estimation error of input parameters. A recently addressed one is
the risk budgeting approach the main benefit of which is the stability of asset weights [6]. In the risk budgeting
approach, a risk budget is associated with each asset, and the weights of assets in the portfolio are adjusted so that
the contribution of each asset to the portfolio risk equals the corresponding risk budget. In particular, if the risk
budgets of all assets are equal, the risk-parity portfolio is obtained. Concerning the value of risk budgets, it is worth
mentioning that, the risk budget is considered as a hyper-parameter chosen by the investor. Therefore, in most
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studies, risk budgets are assumed to be equal and the risk parity approach is considered. However, Bayat, et al. [22]
recently suggested a mechanism to calibrate this hyper-parameter within the optimization model. They provided
a bi-level programming problem in which the upper level allocates the risk budgets to assets while supposing some
constraints based on the investor’s risk priorities, and the lower level determines the risk budgeting portfolio. They
showed that the bi-level programming model has a better performance in comparison with the risk parity model in
terms of various metrics.

The logarithm-based model introduced by Maillard, et al. [20] is a popular convex formulation for the risk-
budgeting approach. This model has been investigated with different risk measures such as standard deviation [4],
mean-standard-deviation [24], value at risk [14], and conditional value at risk [5]. Moreover, there exist various
extensions for this problem to involve real-world constraints such as putting a lower-bound on the expected portfolio
return [16], short selling [11], involving the cardinality constraint [1, 15, 18], and imposing lower and upper bounds
on the weight of assets [23].

Although the risk budgeting model is stable in the asset allocation, as stated by Costa and Kwon [12] and
Kapsos, et al. [17], the parameters of this problem such as the components of the covariance matrix are unknown
and need to be estimated. Hence, the parameters are affected by uncertainty and ignoring this fact may result in
deficient performance of the portfolio over out-of-sample data.

To the best of our knowledge, the risk budgeting problem under uncertainty has been just investigated by Costa
and Kwon [12], Kapsos, et al. [17] and Costa and Kwon [13]. Costa and Kwon [12] addressed the risk-parity problem
with variance risk measure and proposed a robust optimization model by considering the box uncertainty set for the
components of the covariance matrix. Later, Costa and Kwon [13] provided a new approach for risk parity problem
considering the uncertainty in the probability distributions of assets return and presented a distributionally robust
optimization model. Kapsos, et al. [17] proposed the risk budgeting problem with variance risk measure considering
a finite set of scenarios for the covariance matrix and presented a scenario-based stochastic programming model
with worst-case risk measure so that the contribution of each asset to the variance risk measure under the worst-case
scenario equals the given risk budget. Our investigation indicates that the model of Costa and Kwon [12] is just
a simple robust formulation, and the model of Kapsos, et al. [17] is conservative due to focusing on the worst
scenario. On the other hand, the model of Costa and Kwon [13] does not utilize scenarios. Therefore, in this paper
we try to extend the scenario based model of Kapsos, et al. [17] while utilizing the advantages of the distributioally
robust optimization model addressed by Costa and Kwon [13].

The main contributions of this paper are as follows: The stochastic risk-parity model of Kapsos, et al. [17] is
extended by considering the mean-standard-deviation as a risk measure assuming that a finite set of scenarios is
possible for the covariance matrix. Then, since the occurrence probability of scenarios is not known with certainty,
the distributionally robust optimization approach which has recently received great attention is utilized [19]. Two
well-known ambiguity sets are examined to develop the distributionally robust counterparts. Computational results
demonstrate superior performance of our models in comparison with the model of Kapsos, et al. [17] over various
datasets.

The remainder of this paper is organized as follows: Section 2 explains some fundamental concepts and defines
the risk-parity problem in more detail. In Section 3, first the stochastic risk-parity model of Kapsos, et al. [17] is
reviewed, then, our novel scenario-based distributionally robust risk-parity model is presented. In section 4, for two
famous ambiguity sets, the robust counterparts are formulated. In section 5 the performance of the robust models
is evaluated in comparison with the model Kapsos, et al. [17] over real-world datasets. Section 6 concludes and
presents future potential research directions.

2. Risk-parity problem

Let the set I = {1, . . . , n}, indexed by i, include n risky assets. Suppose that decision variable xi shows the portion
of capital invested in asset i where 0 ≤ xi ≤ 1. The vector representation of the assets weights is denoted by
x = (x1, . . . , xn)

T and we have
∑

i∈I xi = 1. Let µ and Γ be the mean vector and the covariance matrix associated
with assets return, respectively. Consider the mean-standard-deviation as a risk measure which is defined for a
given portfolio x as follows:

R(x) = −µTx+ α
√
(xTΓx). (1)

The mean-standard-deviation (1) is one of the most common risk measures, and some other famous risk measures
such as value-at-risk and conditional-value-at-risk can be represented in the form of (1) in some special cases [2].
R(x) is positively homogeneous of degree one and continuously differentiable. Additionally, considering SR+ as an
upper bound on the maximum Sharpe ratio, then as R(x) is nonnegative provided that α > SR+ [7]. Therefore,
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the Euler decomposition theorem implies that:

R(x) = xT∇R(x) =
∑
i∈I

xi
∂R(x)

(∂xi)
, (2)

where the term xi
∂R(x)

(∂xi)
is defined the total risk contribution of asset i and denoted by RCi, we have

R(x) =
∑
i∈I

RCi.

The portfolio x is called the risk-parity portfolio if all assets equally contribute to the portfolio risk. In other
words, the risk-parity portfolio satisfies the following equation:

RCi =
R(x)

n
, ∀i ∈ I∑

i∈I xi = 1

xi ≥ 0, ∀i ∈ I

(3)

By means of Karush-Kuhn-Tucker (KKT) conditions, Roncalli [24] proved that in order to find a portfolio x
satisfying equation (3), it is enough to solve Model 1 where κ is an arbitrary constant. Assuming that (y∗1 , . . . , y

∗
n)

min R(y)

s.t.
∑
i∈I

1

n
ln(yi) ≥ κ (4)

yi ≥ 0, ∀i ∈ I (5)

Model 1: Risk-parity problem

is the optimal solution to Model 1 the risk-parity portfolio can be achieved by x∗
i =

y∗i∑
i∈I y

∗
i

, ∀i ∈ I [24].

Remark 2.1. As pointed out by [8], the mean-standard-deviation risk measures (1) is a convex function. Moreover,
due to the convexity of the function ln(yi), the feasible region of Model 1 is also a convex set. Hence, Model 1 is a
convex optimization model and can be solved directly by global nonlinear programming solvers. In our computational
experiments, the solver BARON is utilized.

3. Risk-parity problem with uncertain covariance matrix

In this section, we extend the risk-parity problem under the assumption that the covariance matrix is uncertain and
a finite set of scenarios S = {1, . . . , S} , indexed by s is possible. The covariance matrix under scenario s and the
occurrence probability of s are denoted by Γs and Ps respectively. Thus, the mean-standard-deviation risk measure
under scenario s, denoted by Rs(x), is defined as follows:

Rs(x) = −µTx+ α
√
(xTΓsx). (6)

For the Euler decomposition (2) to hold under scenario s ∈ S, the function Rs(x) should be nonnegative. To satisfy
this condition, we assume that α > SR+

s for every s ∈ S where SR+
s is an upper bound on the maximum Sharpe

ratio under scenario s [24].
In what follows, we consider the stochastic risk-parity problem in two cases. The first case has been introduced

by Kapsos, et al. [17], and the second case is the innovation of this paper.

3.1. Model of Kapsos, et al. [17]

In the model of Kapsos, et al. [17], the focus is on the worst-case scenario and the aim is to construct a portfolio in
which all assets equally contribute to the portfolio risk under the worst-case scenario. It is formulated as follows:

Let y∗ be the optimal solution to Model 2. Then in the portfolio constructed by x∗
i =

y∗i∑
i∈I y

∗
i

all assets equally

contribute to the risk measure Rs under the worst-case scenario.

An equivalent reformulation of Model 2 is as follows and we refer to it as worst-case risk-parity (WRP) problem:
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min z = max
s∈S

Rs(y)

s.t. (4), (5)

Model 2: Stochastic risk-parity model of Kapsos, et al. [17]

min z = θ

s.t. (4), (5)

Rs(y) ≤ θ ∀s ∈ S
θ ≥ 0

Model 3: WRP

3.2. Our model

Instead of focusing on the worst-case scenario, in our new model, the aim is to construct a portfolio in which all
assets equally contribute to the expectation of the portfolio risk over all scenarios. It is formulated as follows:

min z =
∑
s∈S

PsRs(y)

s.t. (4), (5)

Model 4: Our stochastic risk-parity model

Let y∗ be the optimal solution to Model 4. Then, in the portfolio constructed by x∗
i =

y∗i∑
i∈I y

∗
i

all assets equally

contribute to the expected risk measure.

Since the occurrence probabilities of scenarios (i.e. Ps for every s ∈ S ) are not known with certainty, we assume
that the probability distribution P belongs to an ambiguity set P of distributions. Then, the distributionally robust
extension of Model 4 is obtained as follows:

min z = max
P∈P

∑
s∈S

Psτs

s.t. (4), (5)

Model 5: Extension of Model 4 with distributionally robust approach

Model 5 can be equivalently reformulated as the following model which we refer to as distributionally robust
risk parity problem (DRRP): In the next section, we examine two different types of the ambiguity set P and provide

min z = max
P∈P

∑
s∈S

Psτs

s.t. (4), (5)

τs ≥ Rs(y) ∀s ∈ S (7)

τs ≥ 0 ∀s ∈ S (8)

Model 6: DRRP

the corresponding robust counterparts.
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4. Robust counterparts of DRRP for two types of ambiguity set P

In the literature of distributionally robust optimization, the distance-based ambiguity sets are well-known and
commonly used. Assuming that a nominal probability distribution is estimated based on the historical data, the
distance-based ambiguity sets suppose that the probability distribution belongs to a neighborhood of the nominal
probability distribution with a certain distance. Herein, we consider two distance-based ambiguity sets proposed
by Zhu and Fukushima [25]: the box ambiguity set and the TV-distance set which are defined in equations (9) and
(10), respectively:

PB =
{
(Ps = P̄s + ηs ∀s ∈ S) :

∑
s∈S

ηs = 0, ηs ∈ [η
s
, η̄s] ∀s ∈ S

}
, (9)

PTV =
{
(Ps ∀s ∈ S) :

1

2

∑
s∈S

|Ps − P̄s| ≤ ϵ,
∑
s∈S

Ps = 1, Ps ≥ 0 ∀s ∈ S
}
, (10)

Where P̄s is the nominal probability distribution. In box ambiguity set (9), the nominal probability distribution
is changed by ηs and a new probability distribution is produced. These changes should be in range [η

s
, η̄s] and

constraint
∑

s∈S ηs = 0 ensures that
∑

s∈S Ps is equal to 1 to meet conditions for probability distribution. Note that
the interval [η

s
, η̄s] for all s ∈ S is chosen in the way that P̄s + η

s
≥ 0 to have Ps ≥ 0. Moreover, in TV-distance

set (10), contains probability distribution Ps whose l1-distance to the nominal probability distribution P̄s is less
than certain parameter 2ϵ. Other constraints in set PTV guarantee the conditions for probability distribution. The
robust counterparts of the model DRRP associated with ambiguity sets (9) and (10) are provided in subsections
4.1 and 4.2, respectively.

4.1. DRRP with box ambiguity set

Considering the box ambiguity set (9), the term
∑

s∈S Psτs in the objective function of the model DRRP can be
restated as follows: ∑

s∈S
Psτs =

∑
s∈S

(P̄s + ηs)τs =
∑
s∈S

P̄sτs +
∑
s∈S

ηsτs. (11)

By substituting equation (11) in the objective function of the model DRRP, we get the following model: In Model 7,

min z =
∑
s∈S

P̄sτs + max
ηs ∀s∈S

{∑
s∈S

ηsτs :
∑
s∈S

ηs = 0, ηs ∈ [η
s
η̄s] ∀s ∈ S

}
s.t. (4), (5), (7), (8)

Model 7: Restatement of the model DRRP for the box ambiguity set

the inner maximization problem can be substituted by its dual form. Then, we get the following model which we
refer to as box based counterpart of DRRP (B-DRRP):

min z =
∑
s∈S

P̄sτs + η̄svs − η
s
v′s

s.t. (4), (5), (7), (8)

w + vs − v′s = τs ∀s ∈ S (12)

w ∈ R (13)

vs, v
′
s ≥ 0 ∀s ∈ S (14)

Model 8: B-DRRP

4.2. DRRP with TV-distance set

By substituting TV-distance set (10) in Model DRRP, we get the following model: The inner maximization problem
in Model 9 can be equivalently restated as the following model in which the absolute value functions are linearized
by constraints (16)-(19): By substituting the dual form of Model 10 into Model 9, we get the TV-distance based
counterpart of DRRP (TV-DRRP):
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min z = max
Ps,∀s∈S

{∑
s∈S

Psτs :
1

2

∑
s∈S

|Ps − P̄s| ≤ ϵ,
∑
s∈S

Ps = 1, Ps ≥ 0 ∀s ∈ S
}

s.t. (4), (5), (7), (8)

Model 9: Restatement of the model DRRP for the TV-distance set

min
∑
s∈S

Psτs

s.t.
∑
s∈S

Ps = 1 (15)∑
s∈S

as ≤ 2ϵ (16)

Ps − as ≤ P̄s ∀s ∈ S (17)

− Ps − as ≤ −P̄s ∀s ∈ S (18)

Ps ≥ 0, as ≥ 0 ∀s ∈ S (19)

Model 10: Linear reformulation of the inner maximization problem

min q + 2ϵb+
∑
s∈S

(P̄sus + P̄su
′
s)

s.t. (4), (5), (7), (8)

qs + us − u′
s ≥ τs ∀s ∈ S (20)

bs − us + u′
s ≥ 0 ∀s ∈ S (21)

q ∈ R, b ≥ 0 (22)

us, u
′
s ≥ 0 ∀s ∈ S (23)

Model 11: TV-DRRP

It is worth mentioning that model WRP finds a portfolio only based on the worst-case risk measure which is
actually according to the worst scenario and ignores other scenarios. However, these scenarios may have some useful
information. On the other hand, model DRRP with various ambiguity sets uses the advantage of all scenarios and
gives them occurrence probabilities. In the computational experiments section, to evaluate models B-DRRP and
TV-DRRP, we compare them with the model WRP. We indicate that models B-DRRP and TV-DRRP have a
better performance in different aspects such as robustness of the portfolio, standard deviation and Sharpe ratio on
out-of-sample data in comparison with model WRP.

5. Computational experiments

In this section, the importance of models B-DRRP and TV-DRRP are investigated in comparison with model
WRP on real-world instances from the market indices FTSE100 and S&P500 taken from Bruni, et al. [9]. All
computational experiments are performed on a laptop running Windows 10, Core i7 processor and 8 GB RAM. In
additional, all models are coded in GAMS [7] and to solve them, we have used BARON solver.

Scenarios are generated based on historical data of asset returns and included in-sample and out-of-sample
scenarios. Based on historical data, we totally generate S + 1 scenarios. According to [17], Historical data is
divided into S+1 consecutive periods which are contained assets return information in the β consecutive time. The
covariance matrix corresponding to each period s is estimated and denoted by Γs. Scenarios 1, . . . , S are considered

as in-sample scenarios with occurrence probability Ps =
1

S
and models B-DRRP, TV-DRRP and WRP are solved

with these scenarios. Scenario S + 1 is an out-of-sample scenario which is in fact the future of in sample scenarios
and it is utilized for evaluating models. See Figure 1.

Note that as pointed out by Zhu and Fukushima [25],to avoid highly conservative decisions, the distance between
the probability distributions and the nominal distribution should not exceed a given threshold. Therefore, our
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Figure 1: Generating scenarios based on historical data

preliminary experiments indicate that the setting η
s
=

−0.2

S
and η̄s =

0.2

S
for set PB and ϵ = 0.15 for set PTV are

appropriate choices.
Let xm = (xm

1 , . . . , xm
n ) be the optimal portfolio obtained by the model m ∈ {WRP,B-DRRP,TV-DRRP}

Additionally, consider xout = (xout
1 , . . . , xout

n ) indicate the optimal risk-parity portfolio obtained by solving Model 1
for out-of-sample scenario Γs+1. The index Dm shows absolute deviation between portfolio xm and xout, and
indicates how much the portfolio xm is close to the ideal out-of sample portfolio xout. It is clear that the smaller
values of this index are more desirable and show the stability of the obtained portfolio in the out-of-sample scenario.

Dm =

∑
i∈I |xout

i − xm
i |

n
.

Other indices which can be used to evaluate the portfolio obtained by each model m ∈ {WRP,B-DRRP,TV-DRRP}
are the volatility and the Sharpe ratio under the out-of-sample scenario, denoted by V OLm and SRm, respectively.

V OLm =
√

(xm)TΓS+1xm, SRm =
µTxm

V OLm
.

Table 1 compares the performance of models B-DRRP, TV-DRRP and WRP based on the indices Dm, V OLm

and SRm on various instances. The columns labeled by |I|, |S| and “Market”, respectively, represent the number
of assets and scenarios as well as the market-index from which the information is extracted. In each row, the best
results are shown in bold.

Table 1: Investigating the performance of models B-DRRP, TV-DRRP and WRP over out-of-sample scenario

Row Characteristics Market V OLm SRm Dm

|S| |I| V OLB−DRRP V OLTV−DRRP V OLWRP SRB−DRRP SRTV−DRRP SRWRP DB−DRRP DTV−DRRP DWRP

1 5 8 FTSE100 0.0134 0.0134 0.0135 0.2104 0.2138 0.2220 0.0460 0.0485 0.0571
2 5 8 FTSE100 0.0142 0.0142 0.0142 0.2524 0.2341 0.2505 0.0704 0.0708 0.0762
3 5 8 S&P500 0.0294 0.0289 0.0280 -0.0513 -0.0500 -0.0469 0.0371 0.0323 0.0496
4 5 8 S&P500 0.0215 0.0215 0.0210 -0.2480 -0.2527 -0.2295 0.0340 0.0380 0.0367
5 10 12 FTSE100 0.0115 0.0115 0.0113 0.2870 0.2474 0.2601 0.0208 0.0222 0.0311
6 10 12 FTSE100 0.0267 0.0268 0.0273 0.0023 -0.0004 -0.0075 0.0220 0.0231 0.0309
7 10 12 S&P500 0.0450 0.0451 0.0456 0.1171 0.1170 0.1141 0.0196 0.0203 0.0257
8 10 12 S&P500 0.0563 0.0529 0.0504 0.1061 0.1002 0.0970 0.0284 0.0241 0.0198
9 15 15 FTSE100 0.0322 0.0242 0.0432 0.0062 0.2738 -0.0162 0.0184 0.0544 0.0272
10 15 15 FTSE100 0.0238 0.0339 0.0245 0.2712 0.0001 0.2815 0.0542 0.0204 0.0547
11 15 15 S&P500 0.0191 0.019 0.0193 0.2642 0.2560 0.2129 0.0132 0.0138 0.0229
12 15 15 S&P500 0.0200 0.0201 0.0200 0.2680 0.2767 0.2971 0.0107 0.0123 0.0199
13 20 30 FTSE100 0.0136 0.0135 0.0145 0.1491 0.1614 0.1040 0.0180 0.0189 0.0273
14 20 30 FTSE100 0.0136 0.0138 0.0135 0.1696 0.1359 0.1371 0.0190 0.0197 0.0217
15 20 30 S&P500 0.0172 0.0174 0.0174 0.3069 0.3064 0.3258 0.0152 0.0146 0.0193
16 20 30 S&P500 0.0170 0.0171 0.0173 0.3123 0.3129 0.3108 0.0194 0.0194 0.0215
17 30 50 FTSE100 0.0114 0.0151 0.0116 0.2706 0.1225 0.2658 0.0301 0.0130 0.0335
18 30 50 FTSE100 0.0149 0.0117 0.0150 0.1133 0.2731 0.1304 0.0118 0.0307 0.0163
19 30 50 S&P500 0.0102 0.0100 0.0101 -0.0475 -0.0395 -0.0125 0.0318 0.0319 0.0342
20 30 50 S&P500 0.0150 0.0150 0.0151 0.0892 0.0888 0.0999 0.0182 0.0184 0.0200

Ave. 0.021300 0.021255 0.021640 0.142455 0.138875 0.139820 0.026915 0.027340 0.032280
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As can be seen in Table 1, in comparison to the model WRP of Kapsos, et al. [17], our proposed distributionally
robust models B-DRRP and TV-DRRP have better performance in almost all instances regarding the index Dm.
This confirms that the portfolios obtained by B-DRRP and TV-DRRP are more stable and closer to the ideal
out-of-sample portfolio xout. Further, the averaged results reported in the last row of Table 1 indicate that the
models B-DRRP and TV-DRRP performs better than the model WRP regarding all indices, on average.

6. Conclusions

In this paper, the risk-parity portfolio selection problem under the assumption of uncertainty in the covariance
matrix was formulated as a scenario based distributionally robust optimization model. Then, for two given ambiguity
sets, the robust counterparts were provided. The proposed models were compared with the risk-parity model of
Kapsos, et al. [17] on out-of-sample scenario and their proper performance was shown in terms of standard deviation,
Sharpe ratio, and the stability index. The extension of the proposed models to incorporate the real-world constraints
(such as cardinality constraints) is suggested for future work.
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