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1. Introduction

In physics, laws that keep the qualitative characteristics of a system unchanged for a certain period of time are
called conservation laws. For example, the law of conservation of matter and energy, the law of conservation related
to electrical changes, or the law of conservation related to linear momentum. It is necessary to pay attention to the
fact that some features are preserved only in certain cases. For example, the value of a quantity may be maintained
at only one point, or it may not change inside a volume, while changes are taking place outside that volume. In
this case, we have the laws of local consistency. Also, we propose the approximate conservation laws for systems
with small disturbance parameters, which of course is related to this article. We need these rules to increase our
knowledge and understanding of the surrounding world. Conservation laws have an important role in analyzing
and checking basic characteristics for solutions of an equation [10].
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According to Noether’s research in 1918, for systems that basically apply changes, it can be concluded that every
law of consistency is derived from a symmetry [20]. In fact, Noether’s theorem establishes a relationship in the
middle of the symmetries of the differential equations system and constancy laws for equations that apply changes
in principle. This class of equations is called Euler-Lagrange’s equations and of course, it is possible to find the
Lagrangian for certain types of equations [18]. A large part of the phenomena that we deal with in various sciences
of mathematics, physics, and engineering are described by partial differential equations. Therefore, obtaining the
exact solutions to this class of equations plays a very important role in their analysis, although in many cases it is
very difficult or even impossible to find such exact solutions.

In recent years, special and practical methods for constructing exact solutions of this category of equations have
been discovered. The most famous of which is the method of classical symmetries or, in other words, Lie symmetry
groups which is attributed to Sophos Lie [16].

We have a type of PDEs in which there is a small disturbance parameter like ε [6, 23, 26, 27, 28]. This small
disturbance parameter affects the solutions of the system. In other words, the symmetry group changes in these
equations. For this purpose, people like Ibragimov et al., Baikov, and Gazizov proposed a new method to determine
the symmetries of these equations and also to determine their conservation laws when the conservation laws cannot
be obtained to help of Noether’s method. In this method, the concept of approximate conservation laws is proposed
with the help of Lagrangian for perturbed equations [1, 2, 3, 6, 12]. There are other methods for determining
approximate symmetries, which can be seen in the words of researchers such as Fushchich and Shtelen [9].

In this article, we are going to establish the approximate conservation laws for the generalized and perturbed
BBM equation as:

2uut + 3u2ux + u3x + ε(u2x + u4x) = 0, (1)

which was first proposed by Benjamin-Bona-Mahony in order to improve the Kortewage-de-Vries (KdV) equation
for short-amplitude wavelengths with 1+1 dimension [4, 5, 8]. Derks and Gils examine the uniqueness of traveling
waves of (1) in 1993 [7]. Ogawa [21] investigates the existence of periodic waves and solitary waves of (1) in 1994
and presents the connection between the wavelength and the amplitude. If we remove terms u2x and u4x in (1), the
KdV equation is obtained, which is widely used in the study of water waves [13, 15]. Perturbed generalized KdV
equation was studied by Yan et al. in 2014. Utilizing the regular perturbation analysis for a Hamiltonian system
and the geometric singular perturbation theory, they have shown that solitary wave solutions and periodic wave
solutions stay for enough small perturbation parameter [25]. Also, Wazwaz has studied some nonlinear dispersive
generalized forms of the BBM equation in [24]. Recently, many studies have been done on BBM equation and exact
solutions and conservation laws for this equation and its different types have been provided [14]. But regarding
the perturbed equation, limited studies have been done and the present work will obtain valuable results using the
Ibragimov method on this equation.

This article is classified as follows: In Section 2, we discuss important and practical concepts. In Section 3,
with the Ibragimov method, we will calculate the approximate symmetries for (1). In Section 4, we obtain the
approximate conservation laws for (1).

2. Definitions and concepts

In this section, we will express some necessary and important definitions and theorems.

Definition 2.1. Let z = (z1, ..., zN ) be a variable of arbitrary dimension N . A category of first-order differential
operators,

X = ξi(z, ε)
∂

∂zi
,

such that
ξi(z, ε) ≈ ξi0(z) + εξi1(z) + · · ·+ εpξip(z), i = 1, . . . , N,

that ξi0(z), ξ
i
1(z), . . . , ξ

i
p(z) for i = 1, . . . , N, are fixed functions and called approximate operators.

Definition 2.2. Suppose f(x, ε) is a function of n variables x = (x1, . . . , xn) with parameter ε. If f(x, ε) apply to
that

lim
ε→0

f(x, ε)

εp
= 0,

then, f(x, ε) = o(εp) and f is of lower order εp.
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If

f(x, ε)− g(x, ε) = o(εp),

then we call g and f approximately equal and denoted by f ≈ g [11].
We consider,

t̃ = t+ aτ(t, x, u, ε) + o(a2),

x̃ = x+ aξ(t, x, u, ε) + o(a2),

ũ = u+ aϕ(t, x, u, ε) + o(a2), (2)

such that

ξ(t, x, u, ε) ≈ ξ0(t, x, u) + εξ1(t, x, u) + · · ·+ εpξp(t, x, u),

that a is the parameter of group and ε is small parameter as a one-parameter group of approximate transformations
G. Functions τ and ϕ are defined similarly.

The infinitesimal generator of G is in the form,

X = ξ(t, x, u, ε)
∂

∂x
+ τ(t, x, u, ε)

∂

∂t
+ ϕ(t, x, u, ε)

∂

∂u
.

Let,
X = X0 + εX1, (3)

be an arbitrary infinitesimal generator, where

X0 = ξ0(t, x, u)
∂

∂x
+ τ0(t, x, u)

∂

∂t
+ ϕ0(t, x, u)

∂

∂u
,

X1 = ξ1(t, x, u)
∂

∂x
+ τ1(t, x, u)

∂

∂t
+ ϕ1(t, x, u)

∂

∂u
.

Theorem 2.3. If (3) is an approximate invariant which admits G, then

X = X0 + εX1 ≈ ξi0(z)
∂

∂zi
+ εξi1(z)

∂

∂zi
, (4)

is the generator of G if and only if

[X(k)H(z, ε)]H≈0 = o(ε),

or
[X

(k)
0 H0(z) + ε(X

(k)
1 H0(z) +X

(k)
0 H1(z))](7) = o(ε), (5)

and on the contrary, where X(k) is the prolongation of X in order k [11].

If operator (4) satisfied the relation (5), we say, an infinitesimal approximate symmetry has been accepted by (3).

Definition 2.4. If we consider G as a group of one-parameter approximate transformations with

z̃i ≈ f(z, a, ε) ≡ f i0(z, a) + εf i1(z, a), i = 1, · · ·, N, (6)

then
H(z, ε) ≡ H0(z) + εH1(z) ≈ 0, (7)

is called an approximate equation and if z = (x, u, u(1), · · ·u(m)), then (7) is an approximate equation of order m
and G becomes a group of approximate transformations for the differential equation [18].

Theorem 2.5. If it’s possible to consider the operator X = X0 + εX1 which is X0 ̸= 0, for the relation (7), then

X0 = ξi0
∂

∂zi
, (8)

considered an exact symmetry for the equation of

H0(z) = 0. (9)
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Definition 2.6. We call equation (7) the perturbed part and equation (9) the unperturbed part of the equation.
According to what was stabled in Theorem 2.5, the operator X0 obtained from equation (8) is the exact symmetry
for the unperturbed equation (9) and the approximate symmetry generator that is obtained from the relation X =
X0+εX1 is also called the transformation of infinitesimal symmetry X of (9) and is obtained with the help of εF1(z)
if these symmetries differ in only one ε, then the perturbed equation (7) inherits the symmetries of the unperturbed
equation.

Definition 2.7. Suppose
L ≡ vE, (10)

with the dependent variable v = v(x, t), in this case, the adjoint equation is defined as follows,

E∗ =
δL

δu
=
∂L

∂u
−Di

∂L

∂ui
+DiDj

∂L

∂uij
−DiDjDk

∂L

∂uijk
+ · · · = 0, i, j, k = 1, 2, (11)

which δL
δu , be as the variational derivative and Di, be as the total differential operator.

Definition 2.8. If the same initial equation is obtained by putting v = u in (11), then E = 0 is called self-adjoint.

Definition 2.9. If a function like v = ϕ(u) where ϕ′(u) ̸= 0 exists so that

E∗|v=ϕ(u) = λE,

(λ is an undetermined coefficient) then E = 0 is quasi-self-adjoint.

Definition 2.10. For equation (1), if exists a vector in form of C = (C1, C2) which applies in the condition

Dt(C
1) +Dx(C

2) = 0, (12)

to all the solutions of the equation E and E∗, then has a non-local conservation law and has a local conservation
law if C applies only to the solutions E.

Definition 2.11. In the method of Ibragimov that is apply the Lagrangian for perturbed equations [11], first, you
need to calculate the conserved vectors with the help of point symmetries using the following formula [6],

v = ξ1(t, x, u)∂x + ξ2(t, x, u)∂t + ϕ(t, x, u)∂u,

and

Ci =W [
∂L

∂ui
−Dj(

∂L

∂uij
) +DjDk(

∂L

∂ui,j,k
)] +Dj(W )[

∂L

∂ui,j
−Dk(

∂L

∂ui,j,k
)] +DjDk(W )

∂L

∂ui,j,k
, (13)

where i, j, k = 1, 2 and W = ϕ− ξiui.

In the following, we explain the method of obtaining Lie point symmetries for an arbitrary system of differential
equations. We have considered a nonlinear system of differential equations with partial derivatives of order n,
including p independent variable and q dependent variable along with its derivatives [17, 22],

∆v(x, u
n) = 0, v = 1, . . . , L, x = (x1, . . . , xp), u = (u1, . . . , uq). (14)

In this way, we consider the one-parameter Lie group transformations that act on (14) as follows:

x̄i = xi + εξi(x, u) + o(ε2),

ūj = uj + εϕj(x, u) + o(ε2),

where i = 1, . . . , p, j = 1, . . . , q, and ξi as well as ϕj are the infinitesimal of system [19]. By choosing the vector
field v in the following form,

v =

p∑
i=1

ξi(x, u)∂xi +

q∑
j=1

ϕj(x, u)∂uj ,

the symmetries of the system are obtained. The application of these symmetries to the infinitesimal transformation
causes the invariance conditions

vn[∆v(x, u
(n))] = 0, ∆v(x, u

(n)) = 0, v = 1, . . . , r,
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where vn is called the infinitesimal generator prolongation of order n that compute by

vn = v +

q∑
j=1

∑
k

ϕjk(x, u
(n))∂uj

k
,

where

ϕkj (x, u
(n)) = Dk(ϕj −

p∑
i=1

(ξiuji )) +

p∑
i=1

ξiujk,i,

and k = (i1, . . . , iα), 1 ≤ iα ≤ p, 1 ≤ α ≤ n.

3. Approximate symmetry analysis for the perturbed generalized BBM equation

In this section, we intend to calculate the group of approximate symmetries for the perturbed and generalized BBM
equation, for this purpose, we find the vector field X = X0 + εX1 as an approximate symmetry group for the
following equation,

∆0 := 2uux + 3u2ux + u3x + ε(u2x + u4x) = 0, 0 ≤ ε < 1.

In this way, the infinitesimal generator for the equation is obtained in the following form,

X0 = (−2C1t+ C2)∂t + (−C1x+ C3)∂x + C1u∂u, (15)

where C1, C2, C3 are arbitrary constants. To determine the approximate symmetries of (1), we must first calculate
the auxiliary function I according to the following command,

I =
1

ε

[
pr(k)X0(H0(z) + εH1(z))

∣∣∣
H0(z)+εH1(z)=0

]
.

By putting X0 from (15) in the above equation, we have,

I = −C1(u2x − u4x).

To calculate X1, its enough to use the relation,

pr(k)X1(H0(z))
∣∣∣
H0(z)

+ I = 0. (16)

By placing the above results in (16) we have,

pr(3)X1(∆1)
∣∣∣
∆1=0

− C1(u2x − u4x) = 0. (17)

By solving (17), the coefficients ξ1, τ1, and ϕ1 are obtained. After substituting them in X we have,

X = X0 + εX1

= (−2C1t+ C2)∂t + (−C1x+ C3)∂x + C1u∂u + ε
(
(−2A1t+A2)∂t + (−A1x+A3)∂x +A1u∂u

)
,

and the infinitesimal approximate symmetry spanned by the following independent operators:

V1 = ε∂x, V2 = ε( 14x∂x + u∂u), V3 = ε∂t,
V4 = ε(t∂t +

1
4x∂x), V5 = ∂x, V6 = 1

4x∂x + u∂u,
V7 = ∂t, V8 = t∂t +

1
4x∂x.

(18)

4. Adjoint equation and computing conserved laws

Formal Lagrangian for (1) is

L = vE = v(2uut + 3u2ux + u3x + ε(u2x + u4x)),

and the adjoint equation (E∗) to (1) is

E∗ = v(2ut + 6uux)−Dx(3u
2v)−Dt(2uv) +D2

x(εv)−D3
x(v) +D4

x(εv) = 0.
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With setting u = v it becomes the original equation, hence (1) is self-adjoint. With substitution

v(t, x, u, ε) ≃ ϕ(t, x, u) + εψ(t, x, u),

that is satisfying in nonlinear self-adjoint condition

E∗|(4) ≃ λE,

we have,

− 3u2ϕx − 3u2ϕuux − 3u2εψx − 3u2εψuux − 2uϕt − 2uϕuut − 2uεψt − 2uεψuut+

εϕ2x + 2εϕxuux + εϕ2uu
2
x + εϕuu2x − ϕ3x − 3ϕ2xuux − 3ϕ2uxu

2
x − 3ϕxuu2x−

ϕ3uu
3
x − 3ϕ2uuxu2x − ϕuu3x − ψ3x − 3ψ2xuux − 3ψ2uxu

2
x − 3ϕxuu2x − ϕ3uu

3
x−

3ψ2uuxu2x − ψuu3x + ϕ4x + 4ϕ3xuux + 6ϕ2x2uu
2
x + 6ϕ2xuu2x + 3ϕ3uxu

3
x+

9ϕx2uuxu2x + 3ϕ2x2uu2xux + 4ϕxuu3x + ϕ3uxu
2
x + ϕ4uu

4
x + 6ϕ3uu

2
xu2x+

3ϕ2uu
2
2x + 9ϕ2uuxu3x + ϕuu4x = λ(2uut + 3u2ux + u3x + ε(u2x + u4x)).

Then v = λu + ε and (1) is quasi-self-adjoint. By Approximate symmetry of (18), We obtain Wi and Ci for
corresponding vi.

For V1 we have W = −εux and

C1 = −2εuxu
2,

C2 = −εux(3u2 + u2x) + εuxu2x − εu3xu,

DC1
t +DC2

x

∣∣∣
(1)

= 0.

For V2 we have W = ε(u− 1
4xux) and

C1 = 2ε(u− 1

4
xux)u

2,

C2 = ε(u− 1

4
xux)(3u

3 + u2x) + (
3

4
εux − 1

4
εxu2x)(−ux) + (

1

2
εu2x − 1

4
εxu3x)u,

DC1
t +DC2

x

∣∣∣
(1)

̸= 0.

For V3 we have W = εut and

C1 = −2εutu
2,

C2 = −εut(3u3 + u2x) + εuxtux − εu2xtu,

DC1
t +DC2

x

∣∣∣
(1)

= 0.

For V4 we have W = −ε(tut + 1
4xux) and

C1 = −2ε(tut +
1

4
xux)u

2,

C2 = −ε(tut +
1

4
xux)(3u

3 + u2x) + εux(−
1

4
ux − 1

4
xu2x − tuxt) + ε(−1

2
u2x − 1

4
xu− 3x− tu2xt)u,

DC1
t +DC2

x

∣∣∣
(1)

̸= 0.

For V5 we have W = −ux and

C1 = −2uxu
2,

C2 = −ux(3u2 − εux + u2x)− u2x(εu− ux)− uu3x,

DC1
t +DC2

x

∣∣∣
(1)

̸= 0.
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For V6 we have W = u− 1
4xux and

C1 = 2(u− 1

4
xux)u

2,

C2 = (u− 1

4
xux)(3u

3 − εux + u2x) + (
3

4
ux − 1

4
xu2x)(εu− ux) + (

1

2
u2x − 1

4
xu3x)u,

DC1
t +DC2

x

∣∣∣
(1)

̸= 0.

For V7 we have W = −ut and

C1 = −2utu
2,

C2 = −ut(3u3 − εux + u2x)− uxt(εu− ux)− u2xtu,

DC1
t +DC2

x

∣∣∣
(1)

̸= 0.

For V8 we have W = −(tut +
1
4xux) and

C1 = −2(tut +
1

4
xux)u

2,

C2 = −(tut +
1

4
xux)(3u

3 − εux + u2x) + (εu− ux)(−
1

4
ux − 1

4
xu2x − tuxt) + (−1

2
u2x − 1

4
xu− 3x− tu2xt)u,

DC1
t +DC2

x

∣∣∣
(1)

̸= 0.

Therefore, 8 new conservation laws were obtained for the perturbed generalized Benjamin-Bona-Mahony equation.
It should be noted that the effect of the Euler operator on all the above conservation laws is non-zero, which shows
that these laws are non-trivial. Also, if we apply the Euler operator to the two-by-two difference of these laws, the
result is still non-zero, which indicates that these conservation laws are not equivalent. On the other hand, the
method of finding these laws in this study is different from the methods available in the previous literature, and
this is also a confirmation of the new and valuable nature of these laws.

5. Conclusions

In this article, the approximate symmetry group of the perturbed generalized Benjamin-Bona-Mahony (BBM)
equation was investigated. To find approximate symmetry, the power of the perturbation analysis and Lie symmetry
theory have been combined. Two different theories of approximate symmetry and therefore two distinct derived
methods have been created as a practical tool for computing the invariant solutions and symmetries of equations.
Also, the Baikov and Gazizov method was used to find approximate symmetry and the concept of self-adjoint
equations to obtain the conservation laws. The method used to find the conservation laws and the consequent
results show that these conservation laws are not equivalent to each other or to the previous conservation laws, and
therefore it can be concluded that these conservation laws are new and valuable.
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